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Abstract. Event-related functional magnetic resonance imaging (fMRI)
is considered as an estimation and reconstruction problem. A linear
model of the fMRI system based on the Fourier sampler (k-space) ap-
proximation is introduced and used to examine what parameters of the
activation are estimable, i.e. can be accurately reconstructed in the noise-
free limit. Several possible spatio-temporal representations of the activa-
tion are decomposed into null and measurement components. A causal
representation of the activation using generalized Laguerre polynomials
is introduced.

1 Introduction

In functional magnetic resonance imaging (fMRI), the signal is produced by a
temporary physiologically induced change in the magnetization of a brain re-
gion. This change is called the activation. (For an introduction to fMRI see
[15].) Most prior work has considered fMRI to be a signal-detection problem: for
a given region of interest in the brain, usually a voxel, did the average magneti-
zation significantly change after the subject received some stimulus? Typically
the results of signal detection on many voxels are displayed as an activation map.
Instead, we focus on fMRI as an estimation problem: how much has the average
magnetization in the region changed t seconds after the stimulus?

We prefer estimation to signal detection for several reasons: First, there has
been much debate over the optimal signal-detection strategy. Yet we know from
other signal-detection problems that good understanding of the signal is helpful
in formulating the optimal detection strategy. Second, in many signal-detection
algorithms the first step is to estimate the signal. Third, detection reduces the
data to a binary value (or activation map of binary values), yet information
about the signal magnitude might be of interest. Finally, without knowledge
about the true activation it is difficult to produce the ROC curves needed to
compare the performance of different signal-detection systems.

In any imaging system the accuracy of estimates (reconstructions) is affected
by factors such as measurement noise, errors in the mathematical model of the
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imaging system, and those aspects of an object that the system is incapable of
measuring. The latter is the focus of this paper. We answer the question “In
the best case of noise-free data and no modeling error, what parameters of the
activation can we linearly estimate using data from an fMRI system?” (We con-
sider the fMRI system to include both the MRI hardware and the scan sequence
software.) An equivalent but perhaps more interesting question is “Even with
the generous assumptions of no noise and no modeling error, what parameters
of the activation can we not reconstruct?” Answering these questions allows
us to compare the tradeoffs in spatial vs. temporal resolution of different scan
sequences.

In section 2 we present a linear model relating the fMRI measurements to
the activation we wish to reconstruct and the parameters that must be esti-
mated. Our model explicitly treats the activation as a spatio-temporal function
and the imaging system as a continuous-to-discrete1 mapping. Several ways to
represent the activation are suggested, including a novel representation using
generalized Laguerre polynomials. In section 3 we introduce estimability and
the decomposition of activation viewed through an fMRI system into null and
measurement components. This decomposition tells us for a specific fMRI sys-
tem what can be accurately reconstructed in the absence of measurement noise.
The same analysis can be used either to match the activation representation to
a specific imaging system or to optimize the fMRI system for a given activation
representation. In section 4 we compute the measurement and null components
of several representations of the activation.

2 Linear Model & The fMRI Inverse Problem

Our model of the imaging process begins with the spatial Fourier sampler (k-
space) approximation derived in most texts, including [13] and [12]. The basic
measurement equation is

gj
4
=

∫ ∫

M(r, t)e−2πir·k(t)p(t− tj) dr dt+ nj , (1)

where g is measured, M(r, t) is the transverse magnetization in the rotating
frame at time t, the spatial Fourier components k(t) are controlled by the scan
sequence software, p(t− tj) is the temporal sampling blur of the MRI hardware,
and n is zero-mean white Gaussian noise. (Field strength, excitation/echo times,
and other details of the MRI system are included in M(r, t), as are facets of the
experimental subject such as T ∗

2 (r, t).)
Mental activity causes a temporary change in M(r, t). The magnetization

can be partitioned into baseline equilibrium and activation components

M(r, t)
4
= M eq(r, t) + δM(r, t). (2)

1 The activation function is defined on a continuous set of points, but need not be a
continuous function in the usual sense; for example, discontinuities might occur at
anatomical boundaries.
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Combining (1) and (2) gives

g
4
= geq +∆g (3)

gj =

∫ ∫

M eq(r, t)e−2πir·k(t)p(t− tj) dr dt

+

∫ ∫

δM(r, t)e−2πir·k(t)p(t− tj) dr dt+ nj. (4)

In an fMRI experiment using the event-related paradigm the subject is asked
to perform a cognitive task2 after being exposed to a stimulus [10]. For example,
the subject might be shown a stimulus of three letters with the task to think
of a word beginning with that syllable. During the experiment the MRI system
records data by repeatedly executing a scan sequence. Because the change in
magnetization produces a change in data of similar magnitude to the noise, the
stimulus cycle is often repeated many times to average over noise realizations.
In the discussion below we will use index c to denote the stimulus cycle, index s
to denote the scan sequence repetition within the cycle, and index j to denote a
measurement within the scan sequence.

We assume that the activation is reproducible over stimulus cycles3 and that
the magnetization is linear with the number of stimuli, so

δM(r, t) =
∑

tl<t

f(r, t− tl), (5)

where f(r, t) is the activation due to only one stimulus, and tl is the time of
stimulus number l. We assume that the activation is spatially L2 and therefore
has an infinite-series representation

∫

|f(r, t)|2 dr <∞, ∀t⇒ f(r, t) =

∞
∑

m=1

αm(t)φm(r). (6)

We also assume that the activation decays quickly enough to be temporally L2,
so αm(t) also has an infinite series representation

∫ ∞

0

|f(r, t)|2 dt <∞, ∀r ⇒ αm(t) =
∞
∑

n=1

αmnψn(t). (7)

Therefore the activation can be exactly represented as an infinite series

f(r, t) =

∞
∑

m=1

∞
∑

n=1

αmnφm(r)ψn(t). (8)

2 The experimental subject’s cognitive task should not be confused with the imaging
task, which is either signal detection or parameter estimation.

3 This popular assumption is probably not true. We make it in keeping with the best-
possible-case spirit of our analysis.
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Substituting (5) and (8) into (4) and assuming the same scan sequence is
always used gives the final signal equation:

gcsj = geq
sj +∆gcsj

=

∫ ∫

M eq(r, t)e−2πir·k(t)p(t− tcsj) dr dt

+

∫ ∫

e−2πir·k(t)p(t− tcsj)

c
∑

l=1

∞
∑

m=1

∞
∑

n=1

αmnφm(r)ψn(t− tl) dr dt

+ncsj. (9)

The inverse problem in fMRI is to find the activation f(r, t) by estimating
αmn for a convenient representation φm(r)ψn(t) from data gcsj . In practice the
sums in (9) must be truncated to a finite number of terms.

2.1 Various Activation Representations

There are many possible ways to represent the activation. Motivated by (8), in
this paper we consider only representations where each element can be written
as the product of a spatial function φm(r) and a temporal function ψn(t).

Spatial Representations Voxels are the most popular choice of spatial ele-
ments. Advantages of voxels include a simple physical interpretation and tiling
with no overlap of elements. However, voxels do not correspond to any meaning-
ful anatomical features, and voxel boundaries do not conveniently line up with
the boundaries of different brain regions. The voxel’s long tails in the Fourier
domain pose an additional problem.

Kaiser-Bessel blobs provide another possible spatial representation. (For the
definition and many nice properties of Kaiser-Bessel blobs see [11].) Unlike vox-
els, blobs do not tile space; but they do have compact support in either the space
or frequency domain and almost compact support in the other.

A third choice is anatomical “pixels”, which provide an easy way of building
prior information into the reconstruction. A neurophysiologist would trace out
regions in which the average activation is of interest on a high-resolution scout
scan of the subject. These regions might be small (part of a gyrus), or might be
large (the hippocampus). Because αij are estimated directly from k-space data,
the analyst could compare competing models of neuroanatomy by reconstruct-
ing onto several representations. (A representation with one anatomical pixel is
considered in [14].)

Temporal Representations Three choices of temporal representation are of
interest. Point samples δ(t − ti) are popular, but don’t tell us anything about
what is happening between samples. Sinc functions,

sinc(t− ti) =
sin [π(t− ti)]

π(t− ti)
, (10)
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provide smooth interpolation and are useful if the activation has temporal band-
cutoff B and the sample rate is fast enough that δts < 1/(2B). However, the tail
on sinc extends to time t = −∞, violating causality.

Functions of the form Ctne−βt, with n, β free parameters and C a normaliz-
ing constant are called gamma functions in the fMRI literature and have been
used to model the activation [5]. A gamma function is similar to the expected
activation profile at lower field strengths: starting at zero, increasing to a peak,
and then decaying back to zero. Disadvantages of a gamma function representa-
tion include inability to represent an activation profile with the initial negative
dip expected to be observable at higher field strengths [8], and the nonlinear
regression required to fit n and β.

Both problems are overcome by a causal representation using generalized
Laguerre polynomials weighted by

√
t3e−t. These functions are orthonormal in

the interval [0,∞). (For many nice properties of generalized Laguerre polyno-
mials see [1]. The first three are shown in figure 1.) Because the generalized
Laguerre polynomials are a basis for temporal L2, any activation profile can be
represented by enough terms. Since the envelope is similar to the anticipated
activation, the activation can be represented using only a few elements, leading
to a dimensionality reduction from the number of samples in one stimulus cy-
cle. The sinc representation has as many elements as time points at which f is
sampled, requiring many stimulus cycles to average over noise. The causal repre-
sentation uses fewer elements and therefore has better noise averaging, allowing
fewer stimulus cycles.

0 5 10 15 20 25 30
−4

−2

0

2

4

Fig. 1. The 3rd order generalized Laguerre orthonormal polynomials weighted with√
t3e−t form a causal basis in time. The first three functions are displayed. ψ1(t) =√
t3e−t (solid), ψ2(t) = (4− t)ψ1(t) (dotted), ψ3(t) = (10− 5 ∗ t+ t2/2)ψ1(t) (dashed).
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3 Null Space and Estimability

The signal equation (9) can be rewritten

∆g = Hf(r, t) + n (11)

∆gcsj =

∫ ∫

hcsj(r, t)f(r, t) dr dt+ ncsj (12)

hcsj(r, t) = e−2πir·k(t)
c

∑

l=1

p(t− tcsj + tl) (13)

where H is a continuous-to-discrete linear operator with kernel hcsj(r, t). Be-
cause H maps an infinite Hilbert space to a finite-dimensional space, it is not
invertible and must have a non-trivial null-space. The null space consists of the
functions the fMRI system maps to zero, a generalization of the concept of sys-
tem blind spots. Any spatio-temporal function q(r, t) can be decomposed into
orthogonal null and measurement components

q(r, t) = qmeas(r, t) + qnull(r, t), (14)

where Hqnull(r, t) = 0 and Hq(r, t) = Hqmeas(r, t). (See chapter 7 in [3] for fur-
ther discussion on this decomposition.) Because no information about qnull(r, t)
passes through the fMRI system, without strong prior information about q(r, t)
it is impossible to accurately reconstruct qnull(r, t), hence q(r, t), from the data
even in the absence of measurement noise.

The projection operators M and N onto the measurement and null spaces
respectively are defined

Mq(r, t) = H+Hq(r, t) (15)

N q(r, t) = q(r, t) −Mq(r, t), (16)

where H+ is the Moore-Penrose pseudoinverse. (See chapters 9-10 of [4] for
an introduction to uses of the pseudoinverse in imaging. The Moore-Penrose
pseudoinverse for a Fourier sampler is derived in [16].) The null component of a
function is zero if and only if the function can be written as a linear combination
of the kernels:

N {q(r, t)} = 0 ⇔ q(r, t) =
∑

csj

bcsjhcsj(r, t). (17)

3.1 Estimable Parameters of the Activation

A linear parameter (functional) of the activation

θ(f(r, t)) =

∫ ∫

f(r, t)T (r, t) dr dt (18)

is said to be estimable from the data if there exists a vector w such that

θ(f(r, t)) =
〈

w†g
〉

n
= w†(Hf(r, t) + 〈n〉) = w†Hf(r, t) (19)
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where † means adjoint (transpose and complex conjugate) and 〈·〉 is expected
value [2]. (If θ is estimable then w†g is an unbiased estimator.) Estimable pa-
rameters can be accurately reconstructed in the noise-free limit. By partitioning
into orthogonal null and measurement components, (18) becomes

θ(f(r, t)) =

∫ ∫

fmeas(r, t)Tmeas(r, t) dr dt

+

∫ ∫

fnull(r, t)Tnull(r, t) dr dt. (20)

No cross terms are needed in (20) because null space is orthogonal to measure-
ment space. Since no information about fnull passes through the fMRI system, θ
is estimable only if the second integral in (20) is always 0, which would happen
if either fnull(r, t) = 0 or Tnull(r, t) = 0. The former would be the case only with
strong prior knowledge about the activation. By (17) the latter is the case only
if T (r, t) is a sum of the measurement kernels hcsj(r, t). Because the measure-
ment kernels precisely describe which parameters of the object can be accurately
reconstructed they are called “natural pixels” in [6].

To accurately solve the inverse problem in (9) it is desirable to choose an
activation representation φm(r)ψn(t) such that αmn is estimable using one’s
fMRI system. (Alternatively, one could fix the representation and change the
fMRI system by choosing k(t) to minimize the second integral in (20). Heuristics
for the special case of only one spatial element are given in [14].) In the case of
orthogonal representation functions such as voxels and Laguerre polynomials we
have T (r, t) = φm(r)ψn(t). For a non-orthogonal representation such as Kaiser-
Bessel blobs, T (r, t) is slightly more complicated; see the section on bi-orthogonal
bases in chapter 4 of [3] for more details. Either way, the αmn are not estimable
for any of the representations φm(r) and ψn(t) described above.

How useful is a non-estimable representation? To answer this we can proceed
several different ways. First, we could make some minimal assumptions about
the activation and rigorously bound ‖fnull(r, t)‖, then use this bound to argue
that the second integral in (20) is small [7]. We have been unable to derive any
useful bounds, largely because we believe that f(r, t) has an initial negative dip
and our existing machinery works only for non-negative functions.

Second, we could assume a probability measure on f(r, t) and use that to
derive a distribution on

∫∫

fnull(r, t)Tnull(r, t) dr dt. This is not currently fea-
sible because of the difficulties in constructing a realistic measure on possible
activations.

Third, we can compute fmeas(r, t) for several “typical” activation profiles and
Tmeas(r, t) for several reconstruction representations to see what information
passes through the system [17]. Though not rigorous, this can be useful for
determining what we can’t reconstruct even before noise and modeling error
make things more difficult. The results of several such calculations are given in
the next section.
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4 Computation Results

To examine the null and measurement components we first make the approxi-
mation that there is no temporal blur in the MRI hardware, so p(t) = δ(t) in
(9). We also make the approximation that the activation is constant during the
time interval of one scan sequence. First we compute the null and measurement
decomposition of purely spatial objects, then purely temporal objects.

4.1 Spatial Null/Measurement Decomposition

In order to compute the null and measurement components of a spatial object
we use the Moore-Penrose pseudoinverse for a Fourier sampler derived in [16].
Because H+ is a direct mapping from the irregularly sampled k-space data to
a linear combination of plane waves no regridding or discrete Fourier transform
(DFT) is used in the computation. For these decompositions we used a simulated
scan sequence of 4096 samples along a spiral of Archimedes looping around
the origin 24 times, |kmax| = 1.0, in one tomographic slice of k-space. This
corresponds to a 24cm×24cm field of view with 0.5cm resolution and is similar to
the sequences used in fMRI. The measurement and null components are complex-
valued functions defined on a continuous domain which are then sampled to
produce the displayed image.

Figure 2 shows the decomposition of a square voxel into null and measure-
ment components. Because of the asymmetric sampling in k-space both fmeas(r)
and fnull(r) are complex-valued functions defined ∀r ∈ R

2. The imaginary com-
ponents are not displayed because they are almost two orders of magnitude
smaller than the real components. Notice that the measurement component of
the voxel is not uniform; activation in the center of the voxel is more heavily
weighted than activation at the corners and activation outside the voxel also con-
tributes to its measurement component. Because only a finite region of k-space
is sampled both components have infinite support and extend outside the region
shown. The usual MRI practice of displaying magnitude is misleading since both
fnull and fmeas take on negative values. Figure 3 shows the same decomposition
for a Kaiser-Bessel blob with radius .25cm.

Figure 4 shows the decomposition of one 3mm slice through a voxelized high
resolution brain phantom into null and measurement components for the same
simulated scan sequence. The phantom was created by scanning a brain with
a T ∗

2 weighted sequence (1.5T GE Signa scanner with gradient echo, TE =
30ms, TR = 3000ms) and using conventional techniques to reconstruct onto a
1mm2 grid. The Fourier transforms of each voxel were analytically computed and
added together to produce the simulated k-space data, then H+ was applied to
produce the measurement component. The imaginary portions are again almost
two orders of magnitude smaller than the real portions, so we have not displayed
them.
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f real(fmeas) magnitude(fmeas)

real(fnull) magnitude(fnull)

Fig. 2. Square .5cm2 voxel partitioned into measurement-space and null-space compo-
nents. Only the central 2cm×2cm of the 24cm×24cm are displayed. The linear grayscale
ranges from −0.48 (black) to 1.0 (white). The gray shade in the background of f is 0.
See text for description of the simulated scan sequence.

f real(fmeas) real(fnull)

Fig. 3. Kaiser-Bessel blob of radius .25cm partitioned into measurement-space and
null-space components. (α = 2.0) The linear grayscale ranges from −.28 (black) to 1.0
(white).
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f real(fmeas) real(fnull)

Fig. 4. Digital brain phantom partitioned into spatial measurement-space and null-
space components. The linear grayscale ranges from −497 (black) to 850 (white).

4.2 Temporal Null/Measurement Decomposition

Figure 5 shows the decomposition of the first generalized Laguerre polynomial
into null and measurement components. The function was point sampled every
second, i.e. hl(t) = δ(t − tl). As always, the measurement component is the
sum of the sensitivity functions and the null component is fnull = f − fmeas.
Therefore the measurement component is the sum of weighted delta functions
at the sampling times.

f = ψ1 fmeas fnull
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Fig. 5. First Laguerre polynomial ψ1(t) =
√
t3e−t partitioned into measurement-space

and null-space components for point sampling every second. The measurement com-
ponent fmeas is the sum of weighted delta functions at the sample points and fnull is a
smooth curve with holes at the sample points. Time is on the horizontal axis.

In practice delta functions are rarely used as a reconstruction representa-
tion. Instead some interpolation scheme is used to produce a smooth reconstruc-
tion. (One of the advantages of using a continuous activation representation is
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that it provides a built-in interpolation scheme [9].) So instead of the measure-
ment component, we should examine its reconstruction onto the representation
∑nmax

n=1 αnψn(t). If nmax is set to 6 and the αn are chosen using the minimum
norm least squares criterion then as expected α1 = 1.0 and the other coefficients
are zero.

If a function can be written as the sum of a finite number of generalized
Laguerre polynomials we refer to it as Laguerre-band-limited. (This is analogous
to the more familiar Fourier-band-limited functions.) In practice we won’t be
lucky enough to have a Laguerre-band-limited function as the activation. In
figure 6 we consider a triangle function sampled every second. For illustration
purposes we have chosen to use only 6 generalized Laguerre polynomials in the
reconstruction. Although not perfect, the reconstruction resembles the original
and the reconstruction error is small. In figure 7 we reconstruct the same function
sampled every three seconds. With the slower sampling time the reconstruction
no longer resembles the original and the reconstruction error is large.

f reconstruction error
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Fig. 6. Triangle function sampled every second and then reconstructed onto the first
six generalized Laguerre polynomials. Circles indicate the times/values at which f
was sampled. The error is the difference of f and the reconstruction. Time is on the
horizontal axis.

5 Summary

In this paper we have presented a linear model for the fMRI measurement pro-
cess and the inverse problem of reconstructing activation. Our model explicitly
considers the fMRI system to be a continuous-to-discrete mapping. We suggested
several candidate activation representations for solving the inverse problem, in-
cluding a novel causal representation using generalized Laguerre polynomials. A
causal representation may be useful in other spatio-temporal imaging problems
such as first-pass cardiac imaging. We considered which parameters of the activa-
tion are estimable and examined the spatial and temporal null and measurement
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f reconstruction error
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Fig. 7. Triangle function sampled every three seconds and then reconstructed onto the
first six generalized Laguerre polynomials. Circles indicate the times/values at which
f was sampled. The error is the difference of f and the reconstruction. Time is on the
horizontal axis.

spaces of the fMRI system. The null/measurement decomposition can be used
both to determine which activation representations can be reconstructed using
a specific fMRI system and to tune the fMRI system so that a desired repre-
sentation of the activation can be accurately reconstructed. In order to increase
spatial resolution by sampling more k-space points we must also lengthen the
scan sequence which decreases the temporal resolution. By comparing what can
be reconstructed for with different scan sequences we can investigate this tradeoff
and pick the most appropriate sequence.
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