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Impact on reader performance for
lesion-detection/localization tasks of anatomical

priors in SPECT reconstruction
Andre Lehovich, Member, IEEE, Philippe P. Bruyant, Howard S. Gifford, Member, IEEE, Peter B. Schneider,

Shayne Squires, Robert Licho, Gene Gindi, Senior Member, IEEE, and Michael A. King, Senior Member, IEEE.

Abstract—With increasing availability of multimodality imag-
ing systems, high-resolution anatomical images can be used to
guide the reconstruction of emission tomography studies. By
measuring reader performance on a lesion detection task, this
study investigates the improvement in image-quality due to use
of prior anatomical knowledge, for example organ or lesion
boundaries, during SPECT reconstruction.

Simulated 67Ga-citrate source and attenuation distributions
were created from the mathematical cardiac-torso (MCAT)
anthropomorphic digital phantom. The SIMIND Monte Carlo
software was then used to generate SPECT projection data.
The data were reconstructed using the De Pierro maximum-
a-posteriori (MAP) algorithm and the rescaled-block-iterative
(RBI) algorithm for comparison. We compared several degrees
of prior knowledge about the anatomy: no knowledge about the
anatomy; knowledge of organ boundaries; knowledge of organ
and lesion boundaries; and knowledge of organ, lesion, and
pseudo-lesion (non-emission uptake altering) boundaries. The
MAP reconstructions used quadratic smoothing within anatomi-
cal regions, but not across any provided region boundaries. The
reconstructed images were read by human observers searching
for lesions in a localization receiver operating characteristic
(LROC) study of the relative detection/localization accuracies
of the reconstruction algorithms. Area under the LROC curve
was computed for each algorithm as the comparison metric.
We also had humans read images reconstructed using different
prior strengths to determine the optimal trade-off between data
consistency and the anatomical prior. Finally by mixing together
images reconstructed with and without the prior, we tested to
see if having an anatomical prior only some of the time changes
the observer’s detection/localization accuracy on lesions where
no boundary prior is available.

We found that anatomical priors including organ and le-
sion boundaries improve observer performance on the lesion
detection/localization task. Use of just organ boundaries did not
provide a statistically significant improvement in performance
however. We also found that optimal prior strength depends on
the level of anatomical knowledge, with a broad plateau in which
observer performance is near optimal. We found no evidence
that having anatomical priors use lesion boundaries only when
available changes the observer’s performance when they are not
available.

We conclude that use of anatomical priors with organ and
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lesion boundaries improves reader performance on a lesion-
detection/localization task, and that pseudo-lesion boundaries
do not hurt reader performance. However we did not find
evidence that a prior using only organ boundaries helps observer
performance. Therefore we suggest prior strength should be
tuned to the organ-only case, since a prior will likely not be
available for all lesions.

Index Terms—SPECT image reconstruction, anatomical priors,
reader performance, LROC

I. INTRODUCTION

DUAL-MODALITY imaging systems are coming into
widespread clinical use and remain an important re-

search area. Such systems combine a functional modality
such as SPECT or PET with a high-resolution anatomical
modality such as CT or MRI [1]–[5]. These systems provide
anatomical images which are coregistered to the functional
images, and can be used to estimate attenuation maps for
use in attenuation correction of the emission acquisitions. The
co-registration of the anatomical and emission studies also
allows for the use of anatomical slices as prior knowledge
which can be integrated into emission reconstruction [6]–
[8]. Assessment of the potential utility of employing these
aligned anatomical modalities to produce anatomical priors
for emission reconstruction is of significant interest given
the current clinical availability of such systems. Objective
assessment of reconstruction strategies intended for clinical
usage is best performed with tasks modeled on those employed
clinically. Generally such tasks can be divided into estimation
(quantification) and classification (detection) [9]. An assess-
ment of the utility of anatomical priors in terms of a combined
detection/localization task was the aim of our investigations.
In a detection/localization task the observer must decide if an
image contains a lesion and identify the most likely lesion
location.

Much of the previous work on task-based assessment of
anatomical priors in emission-tomography reconstruction has
focused on quantification. For example Comtat et al. [10]
showed that the use of blurred anatomical labels in 3D PET
reconstruction improved reconstructed slices as assessed by
using region-of-interest (ROI) figures-of-merit (FOMs) such as
the mean estimated bias, standard deviation, and RMS error.
They noted an improvement in noise-bias trade-offs which
was more evident for larger objects. They also investigated
what happens when pseudo-lesions are present. Pseudo-lesions
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are anatomical lesions which do not have a corresponding
change in the activity distribution. In their study pseudo-
lesions increased the variance but did not alter the bias. This
led them to hypothesize that pseudo-lesions could result in
false-positives for detection tasks. More recently Alessio and
Kinahan determined that use of anatomical priors improved
the quantification of activity in tumors of various sizes and
activity levels in terms of bias and variance [11].

A limited number of studies have been performed assessing
the impact of anatomical priors on the classification task
[12]–[15]. Comparison between studies is difficult due to
differences in, among other things, the task (detection, local-
ization, or detection/localization), the observer (numerical or
human), imaging modality (SPECT or PET), and complexity
of the images employed [13]. Nuyts et al. [12] observed
with simulated fluorodeoxyglucose (FDG) PET brain imaging
that the use of an anatomical prior in maximum-a-posteriori
(MAP) reconstruction yielded better performance in terms
of detection accuracy of reduced-count lesions than post-
smoothing of maximum-likelihood expectation-maximization
(MLEM) reconstructions. They assessed performance using
the channelized-Hotelling observer (CHO) performing the
signal-known-exactly–background-known-exactly (SKE-BKE)
task.

A recent investigation by Kulkarni et al. [13] used the CHO
to analyze lesion detection accuracy in simulated abdominal
SPECT slices of MAP reconstruction employing anatomical
priors versus not employing priors. They did not observe any
benefit from use of a prior that included organ or organ plus
lesion boundaries for the task of detecting a signal at a known
location. However, they did not investigate the effect of degree
of proximity of the lesion to an organ for a lesion search
task. Baete et al. [14] observed a statistically significant im-
provement in lesion localization in simulated FDG-PET brain
images by six physicians performing a multiple-alternative
forced-choice (M-AFC) paradigm when anatomical informa-
tion was included in MAP reconstruction as opposed to post-
smoothing of maximum-likelihood expectation-maximization
(MLEM) slices.

We have employed the performance of the combined de-
tection/localization task in simulated 67Ga-Citrate SPECT
imaging for mediastinal lymphoma to evaluate choices for
filtering [16], the inclusion of attenuation correction [17], the
modeling of distance-dependent spatial resolution [18], and
scatter correction [19]. These investigations were extended by
Bruyant et al. [15] to include an evaluation of the use of
anatomical priors in MAP reconstruction using a version of
the CHO with localization (LROC CHO). They found that
using boundaries of organs and lesions to control smoothing in
MAP reconstruction improved performance compared to the
rescaled block-iterative (RBI) algorithm with no prior [20].
The comparison was conducted using simulated 67Ga-Citrate
thorax projections, but did not include Compton scatter in
the simulation. No benefit was observed for the anatomical
prior using solely organ boundaries, although motivation for
a benefit was postulated. Generally the inclusion of pseudo-
lesions did not significantly alter the improvement in detec-
tion/localization accuracy.

Herein we report on the extension of the above investigation
of Bruyant et al [15] to simulated 67Ga-Citrate imaging when
scatter is included in the projections, and scatter correction
is included in reconstruction. We perform a human-observer
comparison of the use of MAP reconstruction employing
anatomical priors to MAP reconstruction without the use of
priors and RBI reconstruction with post-smoothing. These
human-observer studies were performed using the localization
receiver operating characteristic (LROC) paradigm [21] where
the observer provides the site of the suspected lesion and a
confidence rating. Both MAP reconstruction without the use
of priors and RBI reconstruction were previously optimized
using the combined detection/localization task for the class
of images investigated herein [20], [22]. The selection of
the strength of the anatomical prior in MAP reconstruction
was also previously optimized by use of the LROC CHO
[23]. However, we include a human-observer evaluation of
the impact of prior strength to further examine the selection
employed in the comparison study. We also explore whether
the use of lesion boundaries in anatomical priors only some
of the time impacts human-observer performance when the
boundaries are not available. Although the focus of this
study is for SPECT/CT we believe it also gives insight into
SPECT/MRI, PET/CT and PET/MRI.

II. MATERIALS AND METHODS

A. Data simulation

Data simulation followed previously reported techniques
[19]. Briefly, we used the 3D mathematical cardiac-torso
(MCAT) anthropomorphic digital phantom [24] to create
the background (lesion-free) distribution of 67Ga Citrate in
lymphoma imaging. The distribution of Gallium within this
phantom was based on post-mortem examinations of human
subjects [25]. Adjustment in bone marrow uptake was made
in consultation with the clinicians in our department so that
the reconstructed slices more closely matched the appearance
of clinical 67Ga-Citrate studies. The simulated source and
attenuation distributions were 256 × 256 × 256 voxels with
size 1.585 mm.

The SIMIND Monte Carlo program [26] was used to
generate simulated noise-free projection images from this
background radiotracer distribution, as imaged by a medium-
energy general-all-purpose (MEGAP) parallel-hole collimator
with a system spatial resolution of 10.5 mm at 10 cm from
its face. The simulation included the effects of attenuation,
Compton scatter, and distance-dependent spatial resolution.
Separate projections created for the 15% photopeak centered
at 93 keV and 185 keV and for adjacent 8 keV scatter
windows around each photopeak [19]. The photopeak windows
were combined prior to reconstruction. The contributions of
the complete emission spectrum of 67Ga were included in
simulation. A total of 450 × 106 photons from all photopeak
emission energies were collected at each projection angle,
resulting in an estimate of the noise-free projection data. The
93- and 185-keV projections were weighted by their emission
abundances and by the camera efficiency as suggested in
[27], summed, and then collapsed into 128× 128 projections
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at 120 different projection angles encompassing 360 degrees
prior to reconstruction. The size of the projection pixels and
reconstructed voxels is therefore 3.170 mm.

Spherical, 1 cm diameter lesions were then placed at each
of 300 different possible lesion locations throughout the medi-
astinal region of the phantom. For each location the noise-free
lesion projection data was simulated with Monte Carlo in a
manner identical to that described for the background. We
used 1 cm lesions because these are the smallest that would
be found abnormal on a CT scan. Possible lesion locations
were chosen under consultation of a physician and were placed
in clinically likely locations. The lesions were added to the
background projections to generate the mean lesion-present
phantom projections.

A range of lesion-contrast ratios were chosen to make the
task more realistic than with only a single lesion contrast. Be-
cause of the partial-volume effect, small changes in lesion size
will manifest themselves as changes in contrast rather than the
size of the reconstructed lesion [17]. Based on the results of an
unpublished pilot reader study we selected lesion:background
ratios of 25:1, 27.5:1, and 30:1, with one third of the lesions
at each contrast. Our experience in past studies using RBI
has been these contrasts give a mix of lesions ranging from
fairly easy to fairly difficult. When reconstructing with RBI
this resulted in areas under the LROC curve of 0.61, 0.63, and
0.68 respectively, giving observers a range of difficulties.

Each lesion-present volume included 6 lesions located at
different levels of the torso, with at least 3 slices between
lesions. Before reconstruction of the 120 noise-free photopeak
projections Poisson noise was added such that the total number
of counts was 14.8 million. This produces a noise level
comparable to that seen in acquisitions at our clinic.

B. Image reconstruction

Each of the simulated data sets was reconstructed using five
3-dimensional reconstruction strategies. As a baseline control
we used the rescaled block-iterative (RBI) algorithm [28] for
4 iterations (30 subsets with 4 projections each), and then
smoothed with a Gaussian filter (σ = 1.274 pixels). These
reconstruction parameters were selected because they maxi-
mized performance in previous model- and human-observer
studies [20]. We also computed four different smoothing
strategies for maximum-a-posteriori (MAP) reconstruction,
using the De Pierro algorithm [29] as described below; the
parameters for these reconstructions were optimized using the
LROC CHO and limited human-observer studies [20], [23].
All reconstructions used triple-energy window (TEW) scatter
correction [30] applied within reconstruction [31]. The system
matrix used for reconstruction included the effects of depth-
dependent collimator blur and attenuation [18].

MAP reconstruction makes a tradeoff between enforcing
data consistency, measured using the log-likelihood, and con-
sistency with prior knowledge [32]. The tradeoff is controlled
by the prior strength β; larger values of β weight prior
knowledge more heavily. When β is zero no prior knowledge
is used, giving a maximum-likelihood solution. When β is
infinity the data is ignored in favor of the prior. The MAP

reconstruction ~̂fmap is defined by

~̂fmap = arg max
~f

[
log

(
likelihood(~f)

)
+ β log prior(~f)

]
.

(1)
Our likelihood model assumes gamma rays are emitted

from each voxel according to a Poisson distribution. We use
convex quadratic priors similar to those used by [10] and
[13]. Full implementation details are described in [23]. Briefly,
these priors smooth within anatomical regions, but not across
boundaries. Each prior is computed by summing over voxels,

β log prior(~f) = β
∑

i

priori. (2)

The prior term for voxel i is defined by

priori =
1
2

∑
n∈Ni

1
dist(i, n)

(fi − fn)2 , (3)

where Ni is a set of the neighboring voxels around i, and
dist(i, n) is the distance between the centers of voxels i and
n. Knowledge about the anatomy, in the form of organ (and
perhaps lesion) boundaries, is used to determine the voxels
included in Ni. We use up to the 26 nearest neighbors in
3D, but only those within same anatomical region. As a
consequence of (3) the prior terms on each voxel are not
independent.

The MAP reconstructions were computed using four differ-
ent smoothing strategies of the above form, varying the amount
of prior information about the anatomy used to determine
Ni. The first strategy (label “Q” for “quadratic”) placed all
voxels in the same region, and thus incorporated no anatomical
information. This strategy always used all 26 nearest neighbors
for Ni, regardless of anatomy.

The second strategy (label “O” for “organ”) defined anatom-
ical regions using information about organ boundaries, but had
no knowledge about lesions. Only voxels on the same side of
the boundary were included in Ni. This corresponds to the case
in which organs can be seen in the high-resolution modality,
but not lesions.

The third strategy (label “O+L” for “organ and lesion”)
had information about both the organ boundaries and, if and
only if a lesion was present in the simulation, also the lesion
boundary. This corresponds to the somewhat stylized situation
where a radiotracer-avid lesion is always visible in the high-
resolution anatomical-imaging modality.

The fourth strategy (label “O+P” for “organ and pseudo-
lesion”) had information about the organ boundaries and
always had information about lesion boundaries, regardless of
whether or not a lesion was present in the simulation. That is,
lesion boundaries were present when lesions where included in
the image, as per O+L, and were also included over non-lesion
areas when no lesion was present. Such “pseudo-lesions”
might occur when a necrotic region is visible in the high-
resolution modality, but does not have increased radiotracer
uptake. Each lesion-present case had a matching lesion-absent
case. Thus the pseudo-lesions were added at the same location
as true lesions.

A summary of the reconstruction strategies is found in
table I. All MAP reconstructions were computed using the
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label description
RBI control with no prior

Q quadratic smoothing, no anatomical boundaries
O organ boundaries only

O+L organ + lesion boundaries
O+P organ + lesion + pseudo-lesion boundaries

w weak prior (β = 0.005)
s strong prior (β = 0.04)

TABLE I
LABELS USED TO DESCRIBE PRIOR STRATEGIES.

De Pierro algorithm [29], run to approximate convergence in
the following way: the first four iterations respectively used 4,
8, 24, and 60 projections per subset, followed by 50 iterations
with 120 projections per subset.

C. Observer studies

We extracted individual transverse slices from the 3D recon-
structions for analysis by human observers. All lesion-present
and matching lesion-absent slices were through the center of
a lesion location. To keep reading time to a reasonable length,
each slice was read independently and surrounding slices were
not shown to the observers, as providing the readers with
3D information is not expected to make a large difference
in the relative rankings of the reconstruction strategies [33].
We refer to one of these slices displayed to the readers as a
case. We randomly selected half of the lesion locations to get
150 simulated lesion-present cases, and 150 matching lesion-
absent cases. We partitioned the cases into 100 training cases
and 200 study cases.

An upper threshold, above which all pixels were displayed
as white, was applied to the reconstructed images to im-
prove the lesion-to-background contrast, while leaving noise
structure in the vicinity of the lesion unaffected. A separate
threshold was determined for each of the different recon-
struction strategies. Lesion-present and lesion absent slices
had the same threshold. The lesion-pixel maximums were
obtained for all of the image locations used in the study. The
standard deviation σ of this set of maximums {Smax} was
calculated and the upper threshold set to max {Smax} + σ.
This threshold was chosen to increase lesion contrast but leave
unaffected the noise structure in the region of the lesion. After
thresholding the slices were interpolated to 256 × 256 pixels
and quantized to 8 bits. The size of the final pixels is thus
again 1.585 mm. Reconstructions of a sample case with the
lesion located far away from organ boundaries are shown in
figure 1. Reconstructions of a different case with the lesion
located close to an organ boundary are shown in figure 2. The
impact of prior strength β on the reconstruction is illustrated
in figure 3.

Observer studies were conducted in a darkened room using
a monitor with a perceptually-linearized grayscale [34]. The
perceptual linearization resulted in a displayed image with
128 possible grayscale values. Ambient light was kept to
a minimum by drawing a curtain across the reading-room
door and turning off all light sources other than the monitor.
A cardboard mask was used to hide extraneous parts of
the screen. Observers were allowed to adjust the chair to

RBI, lesion present RBI, lesion absent

Q, lesion present Q, lesion absent

O, lesion present O, lesion absent

O+L, lesion present O+L, lesion absent

O+P, lesion present O+P, lesion absent

Fig. 1. Reconstructions of sample lesion-present and matching lesion-
absent case reconstructed using several smoothing strategies. Here the lesion,
indicated by an arrow, is located far from the organ. The sternum is at the top
of the image and the spine at the bottom. The heart is in the center, and ribs
are visible at the edge. The prior strength was β = 0.04. Labels indicating
the reconstruction strategy are summarized in table I.

be comfortable. For each case shown, the observers were
asked to select the most likely lesion location via a movable
cross-hair controlled by a computer mouse, and to provide a
confidence rating that a lesion is present on scale ranging from
1 (confident, no lesion present) to 6 (confident, lesion present).
During training observers were given feedback as to the truth
regarding lesion presence and location after recording their
confidence score. No feedback was supplied to the observer
when reading the actual study cases. Only the ratings for
the study slices were employed in the assessment of lesion
detectability/localization.

We conducted three studies: a study to compare the different
strategies and asses the impact of different types of prior
anatomical knowledge, a study to find the optimal value of
β, and a study to see if having priors present only some of
the time hurts performance when they are no longer available.

1) Study to compare smoothing strategies: Based on a
preliminary study [23], two values of the smoothing parameter,
β = 0.005 and β = 0.04, were chosen for reading by human
observers. The readers were three scientists in our medical-
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RBI, lesion present RBI, lesion absent

Q, lesion present Q, lesion absent

O, lesion present O, lesion absent

O+L, lesion present O+L, lesion absent

O+P, lesion present O+P, lesion absent

Fig. 2. Reconstructions of sample lesion-present and matching lesion present
case, with the lesion located close to an organ boundary. Arrow indicates
lesion location. The heart is in the center of the image, with the liver to its
left. The prior strength was β = 0.04.

physics research group and two physicians in our nuclear-
medicine clinic. We began by having each reader read the 100
training cases reconstructed using each smoothing strategy.
This was done in nine sessions, each consisting of cases
reconstructed using one strategy (RBI, plus 4 MAP each at
two values of β). Cases within a session were read in a random
order, and the strategies were read in a random order. Thus
all readers saw the same cases and strategies, but each in a
different order.

After the initial training, we had the readers read the 200
study cases reconstructed by each strategy. The study cases
were divided into 18 sessions of 100 images. Each session
consisted of cases reconstructed using only one algorithm.
No feedback was provided for any of the study cases. At
the beginning of each session, the reader re-read 50 training
cases, again receiving feedback about the truth. Reading 50
training cases followed by 100 study cases takes about 20
minutes. The two sessions for each observer and reconstruction
strategy were pooled, and area under the localization-response
operating characteristic (LROC) curve was computed using
Swensson’s algorithm [21]. Swensson’s algorithm uses a bi-

normal model to fit an LROC curve to the observer’s ratings.
We tested for statistical significance using two-way ANOVA
followed by Tukey’s honestly significant differences (HSD)
test [35].

2) Study to optimize β: The LROC CHO and human-
observer preliminary studies [23], [36] predicted there
wouldn’t be a large difference between β = 0.005 and β =
0.04. The just described study found a larger difference than
expected in areas under the LROC curve (see results below),
so we did a second study to better determine the optimal
value of β. This study also consisted of 100 training cases
and 200 study cases, though different cases were used than
in the study to compare algorithms. The physicians did not
participate in this study, nor in the mixing-priors study below;
therefore there were only three readers. As these observers
had already been through the study to compare algorithms,
we did not include an initial training phase. However, as
before, each session began with reading 50 retraining cases,
followed by 100 study cases. Sessions consisted of cases
reconstructed using β ∈ {0.02, 0.04, 0.06, 0.1, 0.2, 1.0}, and
we again computed area under the LROC curve.

3) Mixing priors study: The study comparing reconstruc-
tion strategies found that using lesion boundaries in the prior
makes the lesions easier to detect/localize (see results below).
But in clinical practice such strong prior knowledge will only
be available some of the time; for some patients we may not
have a high-resolution anatomical scan, and other times such a
scan won’t show boundaries of all lesions. When the physician
is searching for lesions, as is the case in this study, he/she may
not know if the lesion boundary was included in the prior or
not. It is possible that having the lesion prior present some of
the time could change the observer’s search strategy, and thus
degrade performance when prior knowledge about the lesion
is not available. To test this we did a study in which we mixed
cases reconstructed with and without the lesion boundary in
the prior.

This study again consisted of 100 training cases and 200
study cases. We took the reconstructions using prior O and
prior O+L (β = 0.04) and mixed them together for reading.
Readers received no information about whether or not the
lesion boundary was used, other than what could be seen in the
image. Then we unmixed the cases and scored each strategy
separately. Control sessions, consisting of only one or the other
prior, were also read and scored.

III. RESULTS

A. Study to compare smoothing strategies

Results for the five readers are shown in figure 4, where
it can be seen that strategies O+L and O+P have higher
areas under the LROC curve than the RBI baseline for both
levels of the prior strength (β). Two-way ANOVA analysis
confirmed a statistically significant difference exists between
strategies (p < .001). Table II summarizes use of Tukey’s
HSD test to compare the detection/localization accuracy of
the strategies. The test finds that strategies using the organ
+ lesion boundaries (O+L) and organ + lesion + pseudo-
lesion boundaries (O+P) were significantly better than the RBI
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β = 0.005 β = 0.04 β = 0.20 β = 1.0

Q,
lesion
present

O,
lesion
present

O+L,
lesion
present

O+P,
lesion
absent

Fig. 3. Reconstructions of the same lesion-present case shown in figure 1 for different values of smoothing strength β. For the matching lesion-absent case
strategy O+P is shown. Lesion-present O+P images are not shown as they are identical to the lesion-present O+L. Arrow indicates lesion location.

wQ wO wO+L wO+P sQ sO sO+L sO+P
RBI 0.529 0.806 0.003 0.002 0.999 0.183 0.000 0.000
wQ 1.000 0.325 0.217 0.187 0.999 0.000 0.000
wO 0.142 0.087 0.403 0.965 0.000 0.000
wO+L 1.000 0.000 0.733 0.019 0.023
wO+P 0.000 0.587 0.033 0.040
sQ 0.044 0.000 0.000
sO 0.000 0.000
sO+L 1.000

TABLE II
RESULTS OF TUKEY’S HSD TEST TO COMPARE PRIOR STRATEGIES. BOLD INDICATES RESULTS SIGNIFICANT AT THE p < 0.05 LEVEL. PRIOR LABELS

ARE SUMMARIZED IN TABLE I.

baseline for both prior strengths (p < .05). The same test
found that for both the O+L and O+P strategies the stronger
prior (β = 0.04) was significantly better than the weaker prior
(β = 0.005) (p < .05). The Tukey-HSD test also found that at
β = 0.04 O+L and O+P were significantly better than Q and
O at either strength. No significant difference was observed
between the strategy with no anatomical boundaries (Q) and
the RBI baseline, confirming our previous observation that use
of a non-anatomical quadratic prior did not improve LROC
observer performance [20]. Similarly the strategy employing
just the organ boundaries (O) also showed no significant
difference to the RBI baseline, unlike what we had observed
in previous LROC CHO studies when the projection images
did not include scatter [23].

We partitioned the lesion locations into three sets: those
close to organ boundaries, defined as less than 5 pixels
(7.9 mm) from the nearest organ boundary (58 cases); those
at medium distance, between 5 and 8 pixels (between 7.9 mm
and 12.7 mm) from organs (58 cases); and far lesions, further

than 8 pixels (12.7 mm) away from organ boundaries, (84
cases). This partitioning was done in the 2D slices displayed
to the readers. The area under the LROC curve for each
observer/partition combination was then computed, together
with the mean and standard deviation for each strategy, as
shown in figure 5. The graph shows that, not surprisingly,
lesions far from organ boundaries are easier to find than those
close to organs. Inter-reader variability, indicated by the error
bars, also increases when lesions are near organ boundaries.

We found that the including lesion boundaries in the prior
improved observer performance when β = 0.04, regardless of
lesion location, however the effect is larger when lesions are
close to the boundary, as suggested by [13]. For example, for
close lesions RBI had a mean area of 0.44±0.11, and strategy
sO+L was 0.69± 0.11, an improvement of 0.25, while for far
lesions RBI had an area of 0.88± 0.03 and strategy sO+L of
0.93± 0.03 (an improvement of 0.05).
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Fig. 4. Plot showing area under the LROC curve for reconstructions using
differing amounts of anatomical information. Circles indicate the mean of 5
readers, and the bars indicate plus/minus one standard deviation.

Rdr 1 Rdr 2 Rdr 3 Mean
control, organ boundaries 0.67 0.66 0.70 0.68

unmixed, organ boundaries 0.70 0.63 0.69 0.67
control, organ+lesion boundaries 0.79 0.75 0.80 .78
unmixed, organ+lesion boundries 0.79 0.76 0.80 .78

TABLE III
RESULTS OF THE MIXTURE STUDY

B. Study to optmize β

Plots showing observer performance as a function of prior
strength are given in figure 6. For strategy O there is a plateau
in the region 0.02 ≤ β ≤ 0.1, followed by a pronounced
dropoff as prior strength is increased past that point. Strategies
O+L and O+P showed much less dependence on strength,
with a peak somewhere between 0.1 < β < 1.0. We did
not extend this study to lower prior strengths, as we had
already ascertained that β = 0.04 had higher performance than
β = 0.005, and thus performance would drop off for lower
strengths. (Note that the β = 0.005 points in figure 6 are
reproduced from the previous study, and therefore are based
on different cases than the other points.)

C. Mixing priors study

Table III gives results from the mixture study. In clinical
practice lesion boundaries will only be available for use in a
subset of patients. These results show that a mixture of cases
reconstructed with and without lesion boundaries in the prior
doesn’t affect observer performance. This suggests that the
availability of lesion boundaries doesn’t change the observer’s
reading strategy, or alternatively that the reader recognizes
when lesion boundaries are not available and is able to adjust
reading strategy.

IV. DISCUSSION

Providing the reading physician with access to coregistered
images from both modalities has been shown to improve lesion
localization [37], [38]. In this paper we are considering a
related question: does incorporating prior knowledge about the
patient’s anatomy, as could be derived from the high-spatial-
resolution modality, into emission-tomography reconstruction
improve reader accuracy for the lesion detection/localization
task?

The results shown in figure 4 indicate that reconstructing
with anatomical priors does improve performance for the
LROC task when the prior includes boundaries for the lesion
plus organs, but not organ boundaries alone. Thus, to see
useful gains one must include lesion boundaries in the prior.
(Note that this only requires the boundaries be obtainable from
the high-resolution modality in an automated fashion, not that
a human must go in and specify the lesion boundary.) We have
not investigated a strategy that uses lesion boundaries without
organ boundaries, as in clinical practice this will not always
be possible, furthermore for any given patient one likely
would not know if lesion boundaries were available. Because
we found optimal prior strength for the strategy with lesion
boundaries is in the region where observer performance for
the only-organ strategy is rapidly dropping off (see figure 6),
we suggest prior strength should be tuned to the case without
lesion boundaries.

Other researchers have suggested that including boundaries
for regions that do not have increased uptake (pseudo-lesions)
in the prior might have a detrimental affect on image quality
[10], [13]. We did not find any evidence in this study that
pseudo-lesions impact observer performance.

Our results differ somewhat from several prior studies.
For example Nuyts et al [12] reported that anatomical priors
improve lesion detectability, even without including lesion
boundaries. Their study differed from ours in several im-
portant respects. First, they investigated application to PET
brain imaging, whereas we are investigating SPECT 67Ga
tumor imaging. Second, they made use of prior knowledge
about the level of activity expected in different anatomical
regions, whereas strategies we investigated do not. As a result
their prior had a different functional form than the convex
quadratic priors we used. Third, their lesions were cold spots
with reduced activity, while ours are hot spots. Finally, their
detection task was for a known signal at a known location,
with no search.

On the other hand, Kulkarni et al. [13] found that anatomical
priors, even those including lesion boundaries, do not improve
lesion detectability for SPECT imaging. They used the same
convex quadratic prior functional form that we used. They
assumed a known lesion at a known location, and did not
include search in their detection task, which was performed by
a CHO. Therefore their lesions were of much lower intensity
than ours. They found that a prior using lesion boundaries
could turn noise correlations into a false-positive or false-
negative lesion. For our brighter lesions this effect doesn’t
seem to occur with human observers.

We used a quadratic prior, although other functional forms
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plus/minus one standard deviation.
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for the prior are being actively researched [39]–[41]. It is
possible that using a different functional form for the prior
might improve performance when lesion boundaries are not
available, as was found in [39].

In this work we have not given the readers access to high-
resolution anatomical images, such as those from the CT half
of a SPECT/CT or PET/CT system. It is therefore possible
that we have overstated the impact of anatomical priors. We
will be investigating this in a future study.

V. CONCLUSIONS

We determined that incorporating anatomical boundaries
as prior knowledge in SPECT reconstruction can improve

observer performance. Using a convex quadratic prior, we
found lesion boundaries needed to be included to achieve a sta-
tistically significant improvement for the detection/localization
task. However, performance, measured by area under the
LROC curve, drops off more quickly as a function of prior
strength β when only organ boundaries are used than when
organ and lesion boundaries are used. Therefore prior strength
should be tuned to the case where only organ boundaries are
known, as it is likely that some lesions will only be visible
with SPECT but not the higher-resolution anatomical modality.
Including boundaries of pseudo lesions in the prior did not hurt
observer performance. We found no evidence that including
lesion boundaries in the prior only some of the time hurt
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observer performance when they were not available.
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