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Abstract

This dissertation investigates three topics related to image reconstruction from list-

mode Anger camera data. Our main focus is the processing of photomultiplier-tube

(PMT) signals directly into images.

First we look at the use of list-mode calibration data to reconstruct a non-

parametric likelihood model relating the object to the data list. The reconstructed

model can then be combined with list-mode object data to produce a maximum-

likelihood (ML) reconstruction, an approach we call double list-mode reconstruction.

This trades off reduced prior assumptions about the properties of the imaging system

for greatly increased processing time and increased uncertainty in the reconstruction.

Second we use the list-mode expectation-maximization (EM) algorithm to recon-

struct planar projection images directly from PMT data. Images reconstructed by

EM are compared with images produced using the faster and more common tech-

nique of first producing ML position estimates, then histograming to form an image.

A mathematical model of the human visual system, the channelized Hotelling ob-

server, is used to compare the reconstructions by performing the Rayleigh task, a

traditional measure of resolution. EM is found to produce higher resolution images

than the histogram approach, suggesting that information is lost during the position

estimation step.

Finally we investigate which linear parameters of an object are estimable, in other

words may be estimated without bias from list-mode data. We extend the notion of

a linear system operator, familiar from binned-mode systems, to list-mode systems,

and show the estimable parameters are determined by the range of the adjoint of

the system operator. As in the binned-mode case, the list-mode sensitivity functions

define “natural pixels” with which to reconstruct the object.
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Chapter 1

Introduction

Nuclear medicine is used to study physiological function by answering questions such

as “Where in the body does a molecule accumulate?”, “How fast is the uptake?”,

and “What is the washout rate?” By tracking molecules with known physiology,

especially those which behave differently in healthy versus diseased tissue, one can

also answer clinical questions such as “How much did the heart attack damage this

patient’s myocardium?”, or “Has cancer spread to other parts of the body?” This

chapter provides a brief introduction to nuclear-medicine imaging and the mathemat-

ical modeling of imaging systems. The reader desiring further depth is referred to

Chandra [1992], Bushberg et al. [1994], and Barrett and Myers [2004].

1.1 The imaging chain

We begin, as has by now become traditional, with a discussion of the imaging chain

sketched in figure 1.1. Our emphasis is on the imaging systems used in nuclear

medicine, though a similar diagram can be made for any imaging modality.

The imaging process begins by choosing the object to be imaged. In our case this

will be part of an animal or person, but in other contexts could mean a building,

vehicle, or almost anything else. Almost all imaging systems are designed to image a

variety of objects. For example, we expect medical systems to image many patients

and both healthy and diseased tissue. In keeping with statistical parlance, we shall

refer to the collection of objects we might wish to image as the population or ensemble.

In any imaging system, energy is transferred from the object to the imaging sys-

tem. In nuclear medicine this energy takes the form of gamma-ray photons emitted
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Figure 1.1. Block diagram of the imaging chain for a nuclear-medicine
system. See discussion in section 1.1.
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from inside the object; in other modalities it might be reflected energy. Gamma-rays

are emitted in all directions, so an aperture is used to restrict which photons reach

the detector. This has the effect of forming an image (really a fluence pattern) on

the camera face. The detector then converts the incoming gamma rays into raw data,

which are then transformed by a reconstruction algorithm into an image. (In 35 mm

film systems the raw data correspond to the negative, and reconstruction is done by

making a print.)

The image is then displayed to a photointerpreter, also called the observer, who

extracts information from the image and produces the image analysis. The analysis

may consist of a simple decision—“This patient may have cancer and needs followup”

vs. “This patient does not have cancer”—or may have a quantitative component—

“The liver contains three lesions bigger than 10 mm in diameter.” We refer to the

type of image analysis as the imaging task. The overall accuracy of analysis is called

task performance. (Note a potential source of vocabulary confusion: in the remote-

sensing community “tasking” refers to the scheduling of which objects the satellite

will image and which images the photointerpreter will analyze.)

Computer-aided diagnosis (CAD) and other image-enhancement techniques are

considered to be part of the reconstruction algorithm. The imaging chain is likely to

include humans for the foreseeable future. Despite decades of artificial intelligence

(AI) research, we still don’t know how to create a machine observer for most imaging

tasks. There are also legal considerations—in a medical context, most of the malprac-

tice lawsuit risk is carried by the radiologist, not the imaging system manufacturer.

The remainder of this chapter will give more details about various parts of the

nuclear-medicine imaging chain, with an eye towards studying the reconstruction

process and its impact on task performance.
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1.2 Nuclear medicine

Radiochemists can attach a radioactive atom, called the tracer, to almost any molecule

of physiological interest. For popular molecules the pharmaceutical industry has cre-

ated off-the-shelf kits to do the tagging. Because the tracer travels with the molecule

we can determine where the tagged molecule is concentrating in the body by detecting

which parts of the body are radioactive or “hot”. The radiotracers we are interested in

produce gamma rays as they decay. Many of these gamma rays escape the body. De-

tecting this emitted radiation is the basis of all nuclear-medicine imaging techniques.

In imaging our goal is to use information from the detected radiation to produce a

map of the radiotracer distribution in the body. If the radiotracer does not change

the molecule’s biochemistry, then this is equivalent to mapping the molecule’s distri-

bution. By looking for deviations from a “normal” map, radiologists can diagnose

pathological conditions. Physiologists also use these maps for basic science.

For example, suppose we want to know if a cancer patient’s tumor has spread to

other parts of the body. By injecting a tracer-tagged substance that concentrates in

tumors we can force them to become radioactive. (Note that the goal is to identify

where the tumors are, not to damage the tumors with radiation. Isotopes used in

imaging typically cause minimal tissue damage. In general, radiation oncology uses

different isotopes than those used for imaging.) The simplest way to build up a map

of radiotracer distribution is to scan a directionally-sensitive radiation detector, for

example a collimated scintillation detector, over the patient, recording the activity

at each location. Since tumors have high activity, they will stand out on the map.

The rectilinear scanner, the first nuclear-medicine imaging system, works this way

[Cassen et al., 1951]. Rectilinear scanners were in use at University Medical Center

(UMC) until the late 1970s.

Building images up one pixel at a time is slow; most modern nuclear-medicine

systems use gamma cameras that simultaneously record many pixels at one time.
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The images produced by the rectilinear scanner or a gamma camera are planar pro-

jection images, so named because they show a projection of the radiotracer distribu-

tion onto the imaging plane. Nuclear-medicine projection images are similar to the

more-familiar x-ray projection images used to check for broken bones. Examples of

projection images from different angles are shown in figure 1.2.

Projection images are widely used, but for many imaging tasks tomographic1

images are useful, since they show the activity located in a specific cross section.

Typically projection images are directly measured by using a single gamma camera,

whereas tomographic images are usually reconstructed2 by processing projection data

taken from many different angles. Figure 1.3 provides example tomographic images

of a mouse. In projection images we decide which angles to look from; in tomographic

imaging we decide through which planes to slice cross-sections. (The modular gamma

cameras described below do not directly output projection images; rather the raw data

needs to be reconstructed into a projection image.)

There are two types of tomographic imaging widely used in nuclear medicine:

Single-Photon-Emission Computed Tomography (SPECT) and Positron-Emission To-

mography (PET). PET will receive little attention in this dissertation, because it was

not in use at the University of Arizona during my time there. PET had been used at

UMC briefly during the mid-90s; as I was finishing, a new small-animal PET system

was under development.

In human patients, nuclear medicine is most commonly used for clinical diagnostic

tasks. Nuclear-medicine techniques are also starting to be used with small animals

such as mice and rats. Here the primary interest is research, though doubtless these

techniques will eventually also be used to treat pets. Since SPECT is done in vivo,

1From Greek τ óµoς (slice or section) and −γραφoς (written) [OED 1989].
2The “re” in reconstructed is a vocabulary artifact due to the way mathematicians think about

the imaging process. The radiotracer constructs the “true” cross-section image in the body, which
physics transforms into the measured projection images. We then invert the projection process to
reconstruct our estimate of the “true image”.
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Figure 1.2. Projection images from an MDP mouse bone-scan. Shown are
simultaneous views of the skull from all 16 FastSPECT-II cameras. As discussed in
section 1.3, raw data from these cameras must be reconstructed to form the projection
image. These images were reconstructed from raw-PMT data using two iterations of
the 2-dimensional list-mode EM algorithm described in section 1.7.2.
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Figure 1.3. Tomographic images of a mouse skull bone-scan. Data from the
same scan shown in figure 1.2 is reconstructed using 10 iterations of the 3-dimensional
list-mode EM algorithm. Each sub-image is a different slice through the mouse; the
top 18 are coronal slices (nose down), the middle are sagittal slices (nose down), and
the bottom are transverse slices.
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one can track an animal over days or weeks, monitoring the progress of a treatment

or disease. Many other imaging techniques, in particular autoradiography, require

sacrificing the animal.

Animal imaging can be used in preliminary drug trials for oncology. One can learn

about a proposed drug’s efficacy by comparing the size of mouse-grown xenograft tu-

mors in the presence and absence of the drug. By tagging the drug with a radiotracer,

we can determine to what extent it accumulates in the tumor and any other organs.

Another important application is gene-expression imaging, which is used to determine

where in the body a gene of interest is being expressed.

1.2.1 SPECT

The radioisotopes used in SPECT are gamma-ray emitters; upon decay the tracer

atom produces a single high-energy photon. (PET uses different isotopes, as may

autoradiography.) The most widely used SPECT isotope, and the one used for all

of the images presented in this dissertation, is Technetium (99mTc) with a half-life

of 6 hours and a gamma-ray energy of 140 keV. Technetium is a decay product of

Molybdenum (99Mo), from which it is easy to separate chemically in the form of

pertechnetate (99mTcO−
4 ).

The pertechnetate ion is then attached to the molecule of interest, chosen for

the clinical or research task at hand. For example in cardiac or tumor imaging one

might label sestamibi which accumulates in mitochondria; for a bone scan one could

label MDP (methylenediphosonate) which accumulates in areas of osteogenesis; or

to detect stroke one would label HMPAO (hexamethylpropyleneamine oxime) which

crosses the blood-brain barrier and accumulates in cerebral tissue.

Next the radiotracer-tagged molecule is injected into the patient. In humans the

injection happens quickly, as anybody who has received a shot expects. Unfortunately

a rapid injection is likely to kill a small animal, so in mice the process takes anywhere
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from one to three minutes. To ensure a constant injection rate, the hypodermic

plunger is often controlled by a machine. The molecule usually takes a while to

concentrate in the organ of interest, so there may be a delay of between one-half

and two hours after the injection and before commencement of imaging. In first-

pass studies imaging is done during injection, so the molecule’s first trip through the

circulatory system can be tracked.

When projection images are desired, it typically suffices to collect data from a

single angle. However producing tomographic images usually requires data collected

from many angles. In most clinical systems a single gamma camera is rotated around

the patient to produce projection images from different angles. To speed acquisition

time some systems have two or three rotating cameras. Another option, used by

research systems such as Arizona’s FastSPECT and FastSPECT-II systems, is to

have many fixed cameras simultaneously acquire images from multiple projections.

The tracer is continuously emitting gamma-rays as it undergoes radioactive decay.

Very few of these photons are detected by the SPECT system. The system sensitivity,

in other words the proportion of emitted photons detected by the SPECT imager, is

typically on the order of 10−5. FastSPECT-II has a sensitivity of 4× 10−4 [Furenlid

et al., 2004].

Most SPECT systems detect gamma rays using variations on the Anger camera

[Anger, 1958]. Replacing Anger cameras with semiconductor detectors remains a

hot area of research. Several systems already use semiconductor detectors, but this

technology is not yet widely used in the clinic. All of the gamma-ray detectors we

discuss below are variations on the original Anger design.

The Anger camera detects a gamma ray in a several-step process. (Some pho-

tons pass right through the camera without being detected.) First the incoming

high-energy photon interacts with a scintillation crystal through Compton scatter or

photoelectric absorption, freeing one or more high-energy electrons. (Pair production

does not occur at the energy levels we are interested in.) By further interacting with
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the crystal, the freed electrons produce a shower of lower-energy visible-light photons

which spread through the crystal. If the initial interaction is a Compton scatter, the

scattered photon may trigger a second shower at a different location in the crystal.

Coupled to the crystal are a number of photomultiplier tubes (PMTs). The PMTs

convert the visible-light photons into current which serves as input to the camera’s

detection-acquisition electronics. Ideally, the visible photons produced by one scintil-

lation event reach many PMTs—this is one of the counter-intuitive cases where blur

helps. In most commercial systems the camera electronics convert the PMT readings

into an estimate of the camera-face location where the scintillation event occurred

and an estimate of the energy of the incoming high-energy photon; we will discuss an

alternative approach below.

1.3 Arizona modular gamma camera

The Anger cameras usually used in the clinic feature large crystals coupled to dozens

of PMTs. This approach works well, but has the disadvantage that it is not possible

to pack a number of cameras closely around the object. The modular gamma camera

was developed to allow denser packing of the cameras and quick reconfiguration of

the system geometry. Each module consists of a crystal and small number of PMTs.

Two generations of camera, an old design developed for FastSPECT and a newer

design for FastSPECT-II, are in use. Both are enhancements of the original Anger

design.

The older model used in FastSPECT has a 100 mm × 100 mm × 5 mm crystal of

sodium iodide doped with thallium, NaI(Tl), coupled to four PMTs by a 19 mm thick

exit window [Milster et al., 1990]. The hygroscopic crystal is hermetically sealed to

prevent degradation due to humidity. The sealed crystal and PMTs are housed in

an aluminum can to shield them from external light and make the module easy to

move. Output from the PMTs is digitized and processed to estimate the location and
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energy of each scintillation event. A histogram of the locations is then used as the

projection image.

The second-generation cameras used in FastSPECT-II have a 125 mm × 125 mm

× 5 mm NaI(Tl) crystal connected with a 15 mm thick quartz light-guide to nine

1.5” diameter PMTs [Sain, 2001]. Figure 1.4 shows a sketch of this model of camera.

Current output from the nine tubes is processed by custom electronics and trans-

ferred to a computer workstation in digital form. The raw data corresponding to one

scintillation event comprise a 9-dimensional vector of 12-bit integers (11 data bits and

one sign bit), optionally augmented with a time-stamp.

An example of the raw data is shown in figure 1.5. Each row shows the PMT

outputs for one scintillation event. The columns show the output of one PMT for

many events. A typical projection image will be reconstructed using thousands or

millions of events.

1.4 FastSPECT-II

FastSPECT-II is a small-animal imaging system based on the second-generation 9-

PMT modular camera [Furenlid et al., 2004]. In its usual configuration the system can

handle mice, rats, and similarly sized animals. The system can also be reconfigured

to handle rabbits and cats, but changing the aperture and recalibrating the cameras

requires several days.

The animal lies on its stomach or back on a tray and is moved into the system

down a central pipe. This is similar to the way a person enters a closed-bore MRI

system, though on a smaller scale. Cables and tubes to monitor the animal and

deliver anesthetics, heating, and the radiotracer injection all run down the central

pipe.

The central pipe is surrounded by 16 cameras arranged in two parallel rings of

8. (See figure 1.6.) During imaging the cameras are fixed in the housing; the animal
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1.5"

12.5cm

12.5cm

PMT 1 PMT 2 PMT 3

PMT 4 PMT 5 PMT 6

PMT 7 PMT 8 PMT 9

Glass light guide

NaI(Tl) scintillation crystal

9 PMTs

1.5cm.5cm

Figure 1.4. Sketches of the 9-PMT modular gamma cameras used in
FastSPECT-II. On the left is an illustration of the camera face, on the right a
side view. (Not to scale.)

PMT1 PMT2 PMT3 PMT4 PMT5 PMT6 PMT7 PMT8 PMT9

26 39 9 89 446 108 172 1463 460

51 60 24 250 302 64 599 440 73

41 69 47 261 659 109 164 926 275

1551 178 20 474 117 10 46 25 13

3 16 19 66 291 150 228 1241 357

13 0 1 61 107 31 66 499 843

26 41 18 41 105 41 143 1028 172

14 48 25 93 267 102 267 1481 419

9 145 159 58 653 492 7 176 204

27 11 17 44 78 110 82 855 497

25 27 32 50 151 132 88 1120 465

Figure 1.5. Raw list-mode modular-camera data. Shown are the digitized
PMT voltages from 11 scintillation events collected during a mouse bone-scan. The
optional time-stamp for each event is not shown.
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must be moved to adjust the field of view. If data from more than 16 angles are

desired, the tray must be tilted about the central axis. One drawback is that tilting

the animal changes the direction of gravity, potentially slightly changing the shape

of internal organs.

The central pipe is made of lead so it acts as shielding. In front of each camera a

hole has been drilled in the pipe, allowing emitted gamma rays to reach each camera.

Each hole is fitted with gold pinhole aperture which forms the fluence pattern on the

camera face. The central pipe and pinholes may both be swapped out to change the

system magnification or to use a coded aperture.

Positioning of the animal tray and data acquisition are controlled by an off-the-

shelf personal computer running Windows NT® and LabVIEW® software. After

imaging is complete, data files are transferred over the network to the computer(s)

responsible for reconstruction.

1.5 List-mode data

Although Anger cameras detect individual scintillation events, traditionally the data

are aggregated into a projection image, and information about each individual event is

discarded. Though implementation details vary, the usual approach can be thought of

as performing position estimation on each event, with the projection image provided

by a two-dimensional histogram of the positions. For this reason we refer to this

approach as histogram-mode or binned-mode acquisition. If photon energy has also

been estimated a three-dimensional histogram may be used instead [Gagnon et al.,

1989], or the energy estimate can be used to accept or reject the event.

Modern nuclear-medicine imaging systems typically also have the ability to pre-

serve information about each detected scintillation event. Because the data consist of

a list of events, this is called list-mode acquisition. FastSPECT-II’s modular gamma

cameras always record data in list mode; when projection images are desired they
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must first be reconstructed by processing the list. Several ways of doing so are com-

pared in chapter 3.

Currently most imaging scientists think of list-mode SPECT imaging as recording

the estimated position and energy of the scintillation event, perhaps augmented with

a time stamp, because this is similar to how clinical PET systems work. However,

as we saw in figure 1.5, a list entry can instead consist of the raw PMT readings.

In dynamic studies the event’s time stamp or stage in the cardiac cycle may also be

included in the list. A list entry potentially includes anything one wishes to measure.

It is usual to produce tomographic images starting from projection images. For

obvious reasons this is called projection-mode reconstruction. Even when the original

raw data are list-mode, if projection images are generated during a preliminary step

we shall call it projection-mode tomographic reconstruction. In section 1.7.2 we will

discuss how to produce images directly from list-mode data; we refer to this as list-

mode reconstruction.

We must distinguish between a list entry and how that entry is represented in the

computer. For example, gamma rays detected by FastSPECT-II are recorded in a

separate file for each camera. The camera ID is implicitly part of each event’s list

entry, even though it is stored in the file name, not inside the file together with the

digitized PMT values and time stamps.

1.5.1 Advantages of list-mode data acquisition

Collecting data in list-mode offers several compelling advantages:

1. List-mode acquisition electronics are now easier to design, cheaper to build, and

more flexible than hardware that produces binned-mode images. (Historically

this has not always been the case.) Although designed for the 9-PMT modular

camera, the FastSPECT-II electronics require no modifications to collect data

from the older 4-PMT camera, from a position-sensitive PMT (PSPMT), or
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from a modular camera designed to detect the higher-energy photons produced

by PET tracers. Thus one may prefer list-mode acquisition even when doing

projection-mode tomographic reconstruction.

2. If the projection image, or equivalently the list histogram, is sparse, then list-

mode provides natural compression. This can occur with high resolution de-

tectors and low count rates. In the case of FastSPECT-II the 9-dimensional

histogram has 40969 = 2108 ≈ 3.2 × 1032 bins, so some form of compression is

mandatory. (For comparison, a terabyte is 240 ≈ 1.1 × 1012 bytes.) In high-

resolution PET systems a sparse representation is also needed.

3. Because the list contains the full raw data, no information is lost. This allows us

to compare different reconstruction algorithms on the same data. In particular

we can compare different ways of producing projection images and study other

data-reduction strategies.

4. For dynamic studies list-mode data has nanosecond time resolution; binned-

mode systems require much longer to record an image. If EKG data are also

recorded we get better cardiac-cycle resolution than with gated projection im-

ages. Other advantages of list-mode acquisition in dynamic imaging are de-

scribed by Koss et al. [1997].

5. Lower-energy events due to a photon that underwent Compton scatter within

the subject are usually discarded prior to generation of projection images, and

therefore do not contribute to projection-mode reconstructions. Making use of

scattered photons could improve image quality for a fixed radiotracer dose. How

to extract information from these events in list-mode tomographic reconstruc-

tion is an ongoing area of research.

6. List-mode tomographic reconstruction may be faster than projection-mode re-

construction when we are in a low-count regime. In SPECT this situation is rare,
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but it can occur in PET. (The list-mode tomographic reconstruction of SPECT

data using the EM algorithm takes substantially longer than projection-mode

reconstruction from the same data.)

1.6 Imaging-system modeling

In order to reconstruct a projection or tomographic image from the raw list-mode

data, we need a model of the imaging system relating the object to the data and a

reconstruction algorithm. Reconstructing a tomographic image is a special case of

the more general problem of 3-dimensional or volume reconstruction. Because we are

detecting the tracer’s radioactive decay, a stochastic process, the model should be

statistical in nature: multiple nuclear-medicine images of the same static object will

always be different. This section provides a brief introduction to the mathematical

models used for image and volume reconstruction. A more comprehensive treatment,

including an extensive review of the mathematical background, is given by Barrett

and Myers [2004].

The conventional wisdom in nuclear medicine is that photon-counting noise is

the limiting factor on task performance, otherwise one would reduce the patient’s

radiation dose by lowering the amount of radioactive material injected. This is true

for human imaging, but not necessarily in small-animal imaging where the long-term

health effects of ionizing radiation are not a concern if the animal will be sacrificed

after a few weeks. The amount of radiotracer injected in animal studies is proportion-

ally much higher than in human imaging. It is common to give a mouse an amount

of activity that is comparable to what would be given a human, even though there

are several orders of magnitude difference in body mass. A good rule of thumb is

that lab mice weigh 20–40 g [Suckow et al., 2001] and lab rats 150–500 g, though rats

up to 1000 g are used in obesity studies [Krinke, 2000]. For comparison, 80,000 g is

c. 176 lb.
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First some notation: vectors will be written in lowercase boldface (g)w, matrices

in uppercase boldface (H), and integral operators in uppercase calligraphy (L). We

represent the object being imaged, which might be the activity distribution in an

animal or a human, by the non-negative L2 function f(r, t), the data list as a set of

vectors {gi}, i ∈ {1, · · · , Nlist}, and the reconstructed object as an L2 function f̂(r, t).

(A useful mnemonic is that we are given g and want to f ind f .) A hat over the variable

will always indicate estimate or reconstruction. The specific L2 function space will

depend on whether we are interested in 2-dimensional projection or 3-dimensional

volume imaging. Below we consider each case individually. Probabilities will always

be indicated as a density p(), without the use of subscripts. In discrete cases this

implies use of a Dirac delta function. Expected values will be indicated using angle

brackets 〈 〉. For mathematical convenience, and because it is may be dictated by

the physics, we sometimes assume f(r, t) ∈ L2 ∩ L1, or that f(r, t) is a generalized

function. (Some texts refer to generalized functions as Schwartz distributions, not to

be confused with probability distributions.)

We relate the object f(r, t) to the data list {gi} by using the likelihood model

p ({gi} |f(r, t)). This is the conditional probability of recording list {gi} given that

f(r, t) is the object being imaged. Each gi is a list entry recording the ith scintillation

event. For full generality we include time in f(r, t), although in many cases we will

ignore time and assume a static object f(r), a good assumption when imaging is

quick compared to the radiotracer half-life and any relevant biological processes.

The physics of radioactive decay dictate that emitted photons are statistically

independent, and the acquisition electronics are designed to reject the rare cases

where the PMTs are activated by more than one gamma gray. As a result list entries

are independent and identically distributed (i.i.d.). Therefore the list’s probability

can be formulated in terms of the individual events’s probability,

p ({gi} , Nlist|f(r, t)) = p (Nlist|f(r, t))

Nlist∏
i=1

p (gi|f(r, t)) , (1.1)
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where p(Nlist|f(r, t)) is the probability of recording a list with Nlist entries. In SPECT

the physics dictates that Nlist follows a Poisson distribution, see (1.14). We shall dis-

cuss various ways to model p (gi|f(r, t)) in chapter 2. For now note that p (gi|f(r, t))

is a conditional probability, and so accounts for randomness due both to radioactive

decay in the object and to noise in the measurement system. A common assumption

is that p (gi|f(r, t)) obeys amplified Poisson statistics, in other words that the digi-

tized PMT output can be modeled as a Poisson random variable (RV) amplified by

a gain process [Barrett and Myers, 2004, section 12.3.5].

A data list entry gi from FastSPECT-II has at least ten dimensions, one for each

PMT and one for the camera ID. The units of digitized PMT output are arbitrary,

though they can be related to voltages. List entries gi will have more dimensions if

information such as EKG or a time stamp is included. Note that some components

of gi, in particular the digitized output of the PMTs, may be negative.

At first blush, the problem of reconstructing f(r, t) seems to be hideously under-

constrained, since L2 is an infinite-dimensional Hilbert space, while each list entry gi

is finite dimensional and we only have a finite number Nlist of them. In practice we

regularize the problem by restricting ourselves to a finite-dimensional subspace of L2

determined by an orthogonal (typically orthonormal) set of basis functions Φj(r, t).

The object f (r, t) can be represented as

f (r, t) =

Nbasis∑
j=1

αjΦj(r, t) + εtrunc, (1.2)

where

αj =

∫
∞

Φj(r, t)f(r, t)drdt. (1.3)

We reconstruct the object by estimating the vector of coefficients. The modeling error

εtrunc introduced by using a finite number of basis elements can be made arbitrarily

small by increasing the number of basis elements within the field of view. Put more
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precisely, εtrunc ∈ L2 (or L1 ∩ L2) and

lim
Nbasis→∞

‖εtrunc‖2 = 0. (1.4)

It matters how this limit is taken. Merely expanding the field of view by adding new

elements at the edge is not sufficient, rather one must add new elements which have

support within the already established field of view.

Our estimate of the object, also known as the reconstruction, is

f̂ (r, t) =

Nbasis∑
j=1

α̂jΦj (r, t) . (1.5)

We have deliberately chosen to use the same basis elements Φ(r, t) to represent

both the object and our reconstruction. There is no need to do so; some reconstruc-

tion algorithms choose different Hilbert (or sometimes Banach) spaces for f(r, t) and

f̂(r, t), which may make it impossible to use the same representation for both. How-

ever, using differing representations offers no advantage for the current discussion.

The Rayleigh-task simulations in chapter 3 will use different basis elements for the

object and reconstruction.

In choosing φj(r, t) the reconstruction-algorithm designer has considerable lati-

tude; some of the choices and tradeoffs are discussed by Lehovich et al. [2001]. We’ll

see several examples of basis functions below. Once we’ve chosen a representation, α̂

contains all the information about the object available to the observer.

In static imaging problems, (1.2) simplifies to

f(r) =

Nbasis∑
j=1

αjφj(r) + εtrunc. (1.6)

(We will continue to make the distinction between uppercase Φ, which is a function of

location and time, and lowercase φ which is only a function of location.) In dynamic

imaging it is common to use a separable representation

f(r, t) =

Nbasis∑
j=1

αjφj(r)Ψj(t) + εtrunc, (1.7)
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where Ψj(t) is the time-activity curve for the spatial region defined by φj(r) repre-

senting the average radiotracer concentration within region φj(r) at time t. Note that

Ψj(t) can also be expanded as a sum,

Ψj(t) =
∑

k

βkψk(t), (1.8)

and therefore

f(r, t) =
∑

j

∑
k

αjβkφj(r)ψk(t) + εtrunc. (1.9)

A separable representation such as (1.9) is always possible because f(r, t) ∈ L2,

which has a countable basis [Royden, 1968]. The argument that αjβk form a countable

set is essentially the same one used to show the rational numbers are a countable set,

in other words they can be put in one-to-one correspondence with the integers. We

need to show that the set of separable basis functions φi(r)ψj(t) is countable. The

following diagram shows how to do so:

φ1 φ2 φ3 · · ·
ψ1 Φ1 Φ2 Φ4 · · ·
ψ2 Φ3 Φ5 · · ·
ψ3 Φ6

...
. . .

...
...

(1.10)

where Φ1(r, t) = φ1(r)ψ1(t), Φ2(r, t) = φ2(r)ψ1(t), Φ3(r, t) = φ1(r)ψ2(t), and so on.

We are interested in using list-mode data to reconstruct both 2-dimensional pro-

jection images and 3-dimensional tomographic images. As the physical parameters

being estimated are different, these two situations call for somewhat different Hilbert

spaces and basis elements. Both cases are now considered.

1.6.1 2-dimensional modeling for projection images

If we want to produce projection images, then f(r, t) represents the gamma-ray flux

on the camera face, r ∈ R2, and f(r, t) has units of photons
cm2s

. The physics dictates that
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f(r, t) is a non-negative function with compact spatial support and that spatially

f(r, t) is in L1 ∩ L2. Temporally f(r, t) is L1 ∩ L2 because we image for a finite

amount of time, and therefore will detect only a finite number of photons. (If we

imaged for an infinite amount of time this might not be the case.) Because f()

represents a mean it need not be an integer-valued function.

We are often interested in the location of the emission event. In 2-dimensional

imaging this is the location within the scintillation crystal where the incoming gamma

ray undergoes a Compton or photoelectric interaction and emits a shower of visible-

light photons.

The most common choice of a two-dimensional truncated basis uses square pixels

for φj(r), as shown in figure 1.7. Rectangular pixels are also occasionally used. Many

detectors are pixelated, making this a natural way to model them. With the notable

exception of film, still widely used for image display even in digital imaging systems,

most display devices are based on pixelated output. The coefficients αj represent the

average number of gamma rays hitting pixel j per second. A two-dimensional array

is the natural data structure for a Cartesian grid of pixels.

In static imaging we are often interested in gamma-ray fluence, which has units

photons/cm2. In this case αj is the average number of gamma rays hitting pixel j for

the ensemble of repeated experiments.

1.6.2 3-dimensional modeling for tomographic images and volumes

If we want to reconstruct a 3-dimensional volume, or equivalently a set of tomographic

images, then r ∈ R3 and f(r, t) represents radiotracer concentration with units of

mCi/cm3. Because f(r, t) represents a concentration it must be non-negative. We can

only fit finite-sized objects into our imaging system, so f(r, t) has compact support in

space. A finite amount of radiotracer is injected and radioactive decay is exponential,

so f(r, t) must be in L1 ∩ L2 both spatially and temporally.
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wφ

φ w+1 φ w+2

φ wh

φ 1 φ 2 φ 3

Figure 1.7. Grid of square pixels used as a two-dimensional truncated
basis.
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In 2-dimensional imaging the scintillation event location is within the camera

crystal. However in 3-dimensional imaging the location of the emission event is inside

the object. In SPECT we are interested in the location from which the gamma ray

originated due to radioactive decay.

Voxels3 arranged in a Cartesian grid are by far the most popular choice of 3-

dimensional truncated-basis functions φj(r). A voxel is the characteristic function of

a rectangular parallelepiped, usually a cube; it has value 1 inside the parallelepiped

and 0 outside. For a cubic-voxel basis αj can be thought of as the average number

of gamma rays emitted per second from the cubic region of the subject specified

by φj(r). (Strictly speaking one needs to include a conversion factor, because a

millicurie (mCi) is 37,000,000 disintegrations per second and not all disintegrations

produce a gamma ray.) As the natural extension of Cartesian pixel grids, voxels are

also usually implemented as multi-dimensional arrays in reconstruction algorithms.

Most 3-dimensional visualization software accepts voxelized input. It is trivial to

extract tomographic slices along the cardinal axes from a voxelized data set.

Although voxels are more common, anatomical basis elements are also used in

nuclear medicine. For example to estimate the time activity curve within the liver

we might choose φ1(r) as the organ’s characteristic function, and φ2(r) as the rest of

the body. A truncated basis with only two elements is on the low end, but still useful

in some problems.

1.7 Maximum likelihood (ML) image reconstruction

Once we have chosen basis functions φj(r) to represent the object and a likelihood

model p ({gi} |α) relating the object to the data, we need an algorithm to turn the

list of data {gi} into a reconstructed vector of coefficients α̂. An implicit assumption

3Voxel is a contraction of volume element not yet listed in any of the dictionaries I checked. I
suspect the “x” carried over from pixel, an already lexicographed contraction of picture element
[OED 1989].
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in our modeling approach is that

p (g|f(r)) ≈ p (g|α) . (1.11)

We will discuss such an algorithm in section 1.7.2, but first we look at what needs to

be computed.

Our focus will be a static object f(r). Much of the discussion in this section

carries over to the dynamic case, but note that the EM algorithm presented below

is only appropriate for static imaging. An algorithm intended for dynamic imaging

would need to model temporal effects such as the exponential decay of the radiotracer.

(Of course one could partition the dynamic data into different time slices and apply

the static algorithm at each time, ignoring the other time slices, but then one doesn’t

have a dynamic algorithm.)

We begin by introducing several related conditional probabilities which, taken

together, model the imaging system. For the reader’s convenience a summary is

provided in table 1.1. Recall from sections 1.6.1 and 1.6.2 that αj represents a spatial

average of f(r) over the region φj(r); in the 2-dimensional case αj is the average

number of photons interacting with and passing through region φj(r) on the detector

face, and in the 3-dimensional case αj is the average number of photons emitted from

region φj(r).

Not all gamma rays associated with φj(r) will be detected. The proportion of

emitted photons that produce list entries is the sensitivity, sj. One can also think

of sj as the probability that a photon associated with φj(r) is detected. In SPECT

imaging the sensitivity is quite low. For FastSPECT-II, a system with exceptionally

high sensitivity due to its many cameras, sj on the order of 10−4. FastSPECT-II loses

most photons due to the system collimator; in clinical systems the small number of

cameras means most photons are missed. On the other hand, the sensitivity of a

modular gamma camera is in the range of 0.5–0.7. Of course the camera has a chance

to detect only photons that make it through the collimator.
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N list Average number of list entries in a fixed time exper-
iment.

αj Average number of gamma rays associated with
φj(r). In the static case (1.3) reduces to αj =∫

φj(r)
f(r)dr.

sj sensitivity to φj(r), i.e. the probability that a photon
associated with φj(r) is detected.

p (Nlist|α) Probability of recording a list with Nlist entries from
the object represented by α.

p(φj(r)|α) Probability that a detected photon from the object
represented by α is associated with φj(r).

p(gi|α) probability that a detected photon from the object
represented by α produces data list entry gi.

p
(
gi

∣∣originated inφj(r)
)

probability that a detected event associated with the
region φj(r) produces data list entry gi. In the
2-dimensional case the scintillation event occurs in
φj(r); in the 3D case the gamma ray originates in
φj(r).

Table 1.1. Conditional probabilities used in image reconstruction.

Note that

N list =

Nbasis∑
j=1

αjsj. (1.12)

Because we know the total amount of activity injected, the time since injection, and

the half-life of the radiotracer, we can easily calculate ‖f(r, t)‖1, and thus put a

constraint on α because, assuming no truncation error,∫
f(r)dr =

Nbasis∑
j=1

αj. (1.13)

The physics of radioactive decay dictates that in SPECT the total number of detected

photons follows a Poisson distribution

p(Nlist = n|N list) =
N

n

liste
−N list

n!
. (1.14)

By definition, only detected photons produce data list entries. The probabil-

ity that a detected photon associated with the object α produces list entry g is
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written p(gi|α). Similarly, the probability that a detected gamma ray associated

with φj(r) produces list entry g is written p
(
gi

∣∣originated inφj(r)
)
. We assume that

p
(
gi

∣∣originated inφj(r)
)

and sj are independent of f(r), and α, which corresponds to

an assumption of no scatter and no attenuation. This is a reasonable approximation

for small animal imaging, but can lead to artifacts in human imaging.

If we choose basis elements that partition the object’s support, then each gamma

ray will be associated with one, and only one, region φj(r). Henceforth we shall

assume this is the case. The probability that a detected photon from object α is

associated with region φj(r) is

p(φj(r)|α) =
αjsj∑Nbasis

n=1 αnsn

(1.15)

=
αjsj

N list

. (1.16)

Since a photon is associated with exactly one region we have

p (gi|α) =
∑

j

p
(
gi

∣∣originated inφj(r)
)
p (φj(r)|α) . (1.17)

Given an object represented by α, the model p ({gi} |α) provides a probability

density on {gi}. This is a forward model; it lets us predict what sort of data a known

object may produce. But in image reconstruction we have the opposite situation:

the data list {gi} is fixed and we don’t know the coefficients α. This is the inverse

problem. The function

L (α̂|{gi}) = p ({gi}|α̂) (1.18)

is called the likelihood function. Likelihood has a long history in statistics. List-

mode likelihood was introduced by Snyder and Politte [1983], with further discussion

provided by Barrett et al. [1997].

Note that L (α̂|{gi}) is not a probability density on reconstructions α̂, hence the

switch in notation. This is because we cannot rely on the likelihood to be normalized,

in other words usually ∫
∞

dα̂ L (α̂|{gi}) 6= 1. (1.19)
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We have already noted that list entries are i.i.d. Therefore using (1.1) we can rewrite

(1.18),

L (α̂|{gi}) = p (Nlist|α̂)
N∏

i=1

p (gi|α̂) . (1.20)

To avoid round-off error due to the small magnitudes of p (gi|α̂), we usually work

with the log-likelihood

l (α̂|{gi}) = log (L(α̂|{gi})) (1.21)

= log (p(Nlist|α̂)) +
N∑

i=1

log (p(gi|α̂)) , (1.22)

with the important side benefit that logarithms turn products into sums.

An obvious thing to compute is the vector of coefficients α̂ML maximizing the

likelihood L (α̂|{gi}):

α̂ML = arg max
α

L (α|{gi})

= arg max
α

l (α|{gi}) . (1.23)

In statistics this is called the maximum-likelihood (ML) estimate, or in imaging the

ML reconstruction.

1.7.1 Properties of ML estimation

ML estimators have many desirable theoretical and practical properties, some of which

we list here. Further details and relevant proofs are given by Casella and Berger [1990]

and Monahan [2001].

It usually works. Because of its excellent track record across many disciplines, es-

pecially for problems where a small number of parameters are estimated, ML

is the most widely used estimation technique in applied statistics. As we shall

see in section 1.7.5, image reconstruction is an exception.
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Easy to calculate. Although in imaging the ML estimate cannot be explicitly cal-

culated with a closed-form analytic solution, a variety of iterative algorithms

converge to it. These include specialized algorithms such as the expectation-

maximization (EM) algorithm described in the next section and general-purpose

optimization algorithms such as steepest-gradient descent, classical Newton-

Raphson, and quasi-Newton. Algorithms for both projection-mode and list-

mode reconstruction are well known and tend to converge quickly. The inter-

mediate result after only a few iterations, perhaps only one, is often usable.

Often the natural approach is ML. For many problems the “naive” approach

taken by a smart person not trained in statistical theory turns out to give

the ML estimate. For example, the obvious way to estimate the population

mean of a random variable is by computing the sample mean, which turns out

to be the ML estimate for Gaussian and Poisson random variables. (A proof

for the Poisson case is given in section 2.2.1.) In the case of Gaussian noise the

least-squares solution to an inconsistent system of linear equations can be shown

to be the ML estimate. (Note that counter examples do exist. For example, the

histogram algorithm used in chapter 3 to reconstruct list-mode PMT data into

a projection image is a natural approach which does not give the ML solution.)

Invariance property. If α̂ is the ML estimate of α and τ() is a one-to-one function,

then τ(α̂) is the ML estimate of τ(α). A similar result holds even in the case

where τ() is not one-to-one.

Asymptotically unbiased. In the limit of infinitely many samples (list entries),

the mean of the ML estimate becomes almost-surely arbitrarily close to the

true value.

Asymptotic efficiency In the limit of infinitely many list entries, the variances

on the components of the ML estimate α̂ are the smallest possible, i.e. they
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approach the Cramér-Rao lower bound.

Asymptotic quadraticity. In the limit of an infinite number of list entries, the

log-likelihood function is quadratic in a neighborhood around its maximum.

This is nice because quadratic functions are by far the easiest to maximize

computationally.

Asymptotic normality. In the limit of infinitely many list entries, the maximum-

likelihood estimate has a normal distribution about the true value of the pa-

rameter.

One drawback of the ML approach is that it need not be stable: a small change in

the data may lead to a large change in the estimate. This occurs when the likelihood

has steep cliffs or discontinuities. In cases where the likelihood model is nearly flat

it may be difficult to find the maximum. Fortunately, these situations appear not

to occur in gamma-ray imaging; I don’t know of any examples. We will see plots of

p (gi|φj(r)) and l (α̂|gi) in chapter 2.

1.7.2 EM algorithm

The Expectation-Maximization (EM) algorithm is an iterative way of calculating an

ML estimate. The algorithm has been around in one guise or another for over a

century; for a history of the algorithm see the textbook by McLachlan and Krishnan

[1997]. It was first named EM by Dempster et al. [1977], a paper which remains one

of the canonical references. EM was first introduced into medical imaging by Metz

and Pizer in an unpublished 1971 conference presentation. The first publications

using EM for emission-tomography reconstruction were by Shepp and Vardi [1982]

and independently by Lange and Carson [1984]. A readable derivation of the general

algorithm as applied to any maximum-likelihood problem is found in Lange [1999].
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The list-mode version of EM for tomographic reconstruction was first used by Snyder

and Politte [1983], with a different derivation due to Parra and Barrett [1998].

The algorithm’s name is due to the nature of its update iterations. First one em-

beds the problem space, called the “incomplete data”, in a larger space, the “complete

data”, where the problem is easier to solve. In our case the data list is the incomplete

data, and the list augmented with the true (but unknown) location of each emission

event is the complete data [Parra and Barrett, 1998]. Since one doesn’t know the

location, one marginalizes it away by computing a conditional expected value. (This

is the expectation step). Then one solves for the maximum-likelihood estimate in the

complete space. (The maximization step). Alternating the two steps can be shown

to converge a maximum-likelihood solution.

EM is numerically stable because the likelihood is monotonically increasing at each

step of the algorithm. Uniqueness properties of the EM algorithm will be discussed

in section 1.7.6.2.

1.7.3 Heuristic derivation of the list-mode EM update equation

We can intuitively derive the list-mode EM algorithm for a static object by starting

with the obvious thing to calculate and proceeding in a straightforward fashion, hop-

ing we wind up somewhere useful. As we have already noted, such ad-hoc derivations

lead to the ML estimate a surprising amount of the time. An obvious reconstruction

strategy is to “back project” each detected photon, in other words assign it to each

region φj(r) in proportion to the probability of association, and then sum across list

entries:

uncorrected α̂j =

Nlist∑
i=1

p
(
originated inφj(r)

∣∣gi

)
. (1.24)

We must also correct for the system sensitivity and normalize by the time of imaging:

α̂j =
1

T

Nlist∑
i=1

p
(
originated inφj(r)

∣∣gi

)
sj

. (1.25)
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Snyder and Politte [1983] refer to this as posterior-density weighting.

If one thinks only about the 2-dimensional case, it is tempting to insert a nonlinear

position estimation step into (1.25), such that each event only contributes to the φj(r)

it is most likely to have originated in. However in the 3-dimensional case this is less

tempting. Each detected event could have originated inside a cone specified by the

pinhole aperture. Any location we pick within this cone is likely to be quite far away

from the actual position of the radioactive decay.

Using Bayes rule we know that

p
(
originated inφj(r)

∣∣gi

)
=
p
(
gi

∣∣originated inφj(r)
)
p (φj(r))

normalization
. (1.26)

Notice that p (φj(r)) implicitly depends on α. So by substituting (1.16) we get

p
(
originated inφj(r)

∣∣gi

)
=
p
(
gi

∣∣originated inφj(r)
) αjsjPNbasis

n=1 αnsn

normalization
(1.27)

Because we assume that each event uniquely originated in one region φj(r), in

other words we ignore the possibility of a background event or multiple photons

arriving simultaneously, we know that

1 =

Nbasis∑
j=1

p
(
originated inφj(r)

∣∣gi

)
(1.28)

and therefore that

normalization =

Nbasis∑
j=1

p
(
gi

∣∣originated inφj(r)
) αjsj∑Nbasis

n=1 αnsn

(1.29)

(The FastSPECT-II acquisition electronics are designed to drop events where more

than one photon was detected.)

Thus we have

α̂j =
1

T

Nlist∑
i=1

p
(
gi

∣∣originated inφj(r)
)
αj

Nbasis∑
k=1

p
(
gi

∣∣originated inφk(r)
)
αksk.

(1.30)
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This is a nonlinear equation with no known closed-form solution, even if we make

generous assumptions about the nature of p
(
gi

∣∣originated inφj(r)
)

and are willing

to substitute α̂ ≈ α.

However (1.30) suggests a fixed-point iteration. An initial guess of a uniform

object,

∀j : α̂
(0)
j = 1, (1.31)

is reasonable. We then iterate

α̂
(t+1)
j =

1

T

Nlist∑
i=1

p
(
gi

∣∣originated inφj(r)
)
α̂

(t)
j

Nbasis∑
k=1

p
(
gi

∣∣originated inφk(r)
)
α̂

(t)
k sk

. (1.32)

The update equation enforces the invariance property

Nbasis∑
j=1

α
(t)
j sj =

Nlist

T
∀t>0. (1.33)

When writing software implementing the list-mode EM algorithm, a good debugging

check is to verify (1.33) holds.

The preceding argument is more than a bit hand-wavy. And yet, amazingly, as

proved by Parra and Barrett [1998] iterating (1.32) does lead to an ML estimate when

the number of detection events associated with φj(r) obeys Poisson statistics, as is

the case in SPECT.

It is easy to see (1.32) does not define a contraction mapping. If it were a con-

traction map, the Banach fixed-point theorem would guarantee (1.33) converged to

a unique fixed point regardless of starting point. If we choose as starting point α(0)

such that αj = 0 for some j, then the algorithm is restricted to the hyperplane αj = 0

for all iterations. The only point in the intersection of all such hyperplanes is α = 0,

so that would have to be the putative contraction point. However in practice the al-

gorithm does not converge to α = 0; if it did we wouldn’t use it. (The EM algorithm

does converge, even though it is not a contraction map.)
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1.7.4 List-mode EM in the special case of no detector blur

Chapter 3 compares two ways of producing projection images from list-mode data.

One method is the list-mode EM algorithm, the other is ML position estimation on

each event followed by histogramming. This section shows that for the special case of

a gamma camera with no detector blur the two techniques produce the same answer.

Let us temporarily assume for all possible list entries gi that the likelihood function

p
(
gi

∣∣originated inφj(r)
)

= 1 for exactly one j, and is 0 otherwise. Thus each list

entry can be precisely assigned to exactly one region φj(r). One example of how this

might occur is a gamma camera with no detector blur.

For this special case the list-mode update equation (1.32) converges after only one

iteration to the fixed point

âj =
Nj

Tsj

, (1.34)

where Nj is the number of list entries associated with φj(r). Therefore, for the special

case of no detector blur, the ML solution is to assign each event to exactly one region

and count how many events are assigned to each region, in other words to histogram

the event locations.

To see that this must occur, notice that for this special case the likelihood function

p
(
gi

∣∣originated inφj(r)
)

acts much like the Kronecker δ function inside the sum.

Because p
(
gi

∣∣originated inφj(r)
)

is nonzero at only one value of k, the denominator

of (1.32) satisfies

Nbasis∑
k=1

p
(
gi

∣∣originated inφk(r)
)
α̂

(t)
k sk = α̂(t)

ai
sai
, (1.35)

where ai identifies the region φai
(r) associated with gi. The same thing happens to

the numerator of (1.32) which becomes α̂
(t)
ai . Summing over all list entries gives (1.34).

Outside the special case of no detector blur, estimating the locations of each

event and then histograming does not lead to an ML estimate of α, not even when

the position estimation is done using maximum likelihood. However it seems to be a
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reasonable assumption that in cases of little detector blur the histogram of position

estimates will be close to the ML solution. Chapter 3 compares the two approaches

using data from a modular gamma camera.

1.7.5 Night skies and the myth of convergence

In practice we never run the EM algorithm to convergence for three reasons. First,

the images are useful after only a few iterations, so there is no need to expend extra

CPU time.

Second, although the ML estimate has many nice properties in the asymptotic

limit of an infinitely long data list, in nuclear medicine we rarely have enough data

for that to be relevant. In actual use, when EM is run to convergence the recon-

structed images consist of a small number of point sources surrounded by a black

background. This phenomenon is called the night-sky effect, by analogy with stars

against a black-background. An example is shown in figure 1.8. Night-sky images are

not considered to be especially useful for clinical tasks. Byrne [1993] proved that if we

are reconstructing a discretized object from noisy data the projection-mode EM algo-

rithm will converge to a unique night-sky reconstruction regardless of starting point.

Eric Clarkson has shown that the same phenomenon occurs when reconstructing con-

tinuous objects; his results are still unpublished, for a summary see Barrett and Myers

[2004, sec. 15.3.5]. However it is not clear how to extend Clarkson’s “moment cone”

argument to list-mode data.

Third, when image quality for human observers is considered as a function of

iteration number, it reaches a peak after a small number of iterations, and then

decreases due to the night sky effect [Wilson, 1994; Abbey, 1998]. A precise definition

of image quality will be given in section 1.9.

Nevertheless, output from a few iterations of the EM algorithm is often described

as an ML estimate. Even outside of the ML framework, the specific version of the



46

Figure 1.8. Example of a night-sky reconstruction. Data is from the same
mouse bonescan shown in figures 1.2 and 1.3. On the left is a projection image after
two iterations of the 2-dimensional list-mode EM algorithm. On the right is 100
iterations.

EM algorithm for Poisson data has a useful property for imaging: the multiplicative

updates of (1.32) ensure that f̂(r) is non-negative if the starting point is non-negative.

Since we know that physically f(r, t) must be non-negative, this is valuable prior

knowledge to include in the reconstruction. A history of the early uses of positivity

in image reconstruction is given by Frieden [1981].

1.7.6 Uniqueness of maximum-likelihood solutions

For a given likelihood model p (gi|f(r)), it is natural to wonder about the uniqueness

of maximum-likelihood solutions. Given a list of data {gi}, can the EM algorithm

converge to more than one fixed point? In the asymptotic case of infinite data,

limNlist → ∞, is there more than one f(r) consistent with the data? If there are

multiple solutions can we put any bounds on their differences?

We must worry about three potential sources of non-uniqueness: basis truncation,

EM starting point, and the identifiability of α from p ({gi}|α). (As will be discussed

in section 1.7.6.3, the parameter is identifiable if different values of α are guaranteed

to produce different probability laws.)
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1.7.6.1 Non-uniqueness due to basis truncation Having decided in (1.2) to restrict

ourselves to a finite dimensional subspace of L2 we’ve given up any hope of uniquely

reconstructing f(r), as there are infinitely many L2 functions that share identical

α1, · · · , αNbasis
but differ for higher-order basis elements. Although the truncation

error can be made smaller by increasing the number of basis elements, we usually will

not have the strong prior knowledge required to guarantee it is zero. Furthermore,

increasing the number of basis elements will also increase the uncertainty in our

reconstruction; the error bars about each coefficient will get bigger. Therefore we

must pick basis elements which capture important aspects of the object. This begs

the question: how do we measure importance? Our answer is to use the techniques for

measuring reconstruction algorithm quality which will be introduced in section 1.9.

If we choose non-negative basis elements φj(r) ≥ 0, and also restrict ourselves to

non-negative coefficients αj ≥ 0, then we can leverage our knowledge that f(r) ≥ 0,

to derive a bound on the truncation error:

‖εtrunc‖1 ≤ ‖f(r)‖1 +

∥∥∥∥∥∑
j

αjφj(r)

∥∥∥∥∥
1

(1.36)

The proof is fairly simple. By definition

εtrunc = f(r)−
∑

j

αjφj(r). (1.37)

First let us consider what happens if there exists another non-negative function f0(r)

which has the same set of coefficients, i.e.∫
∞
f0(r)φj(r) dr = αj ∀j. (1.38)

Note that

fα(r) =
∑

j

αjφj(r) (1.39)

is one example of such a function, and

εtrunc = f(r)− fα(r). (1.40)
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Therefore if we can derive a bound on ‖f(r)− f0(r)‖1, we will also have a bound on

‖εtrunc‖1.

Although f(r) and f0(r) are both non-negative, their difference need not be. Let

n(r) = f(r)− f0(r) = n+(r)− n−(r), (1.41)

where n+(r) is the positive portion of n(r) and n−(r) is the negative portion. Because

f(r) and f0(r) are non-negative,

n+(r) ≤ f(r) (1.42)

therefore

‖n+(r)‖1 ≤ ‖f(r)‖1 . (1.43)

Similarly,

n−(r) ≤ f0(r) (1.44)

‖n−(r)‖1 ≤ ‖f0(r)‖1 . (1.45)

Combining (1.43) and (1.45) yields the bound (1.36). (This argument is in the same

spirit as the positivity results of Clarkson and Barrett [1997, 1998].) Unfortunately

this bound is fairly large, and equality can be achieved by choosing f(r) to be a sum

of Dirac delta functions.

1.7.6.2 Non-uniqueness due to EM starting point The EM algorithm is guaranteed

to converge only to a point where the gradient of the likelihood function is zero, not

its global maximum. Therefore if the likelihood has multiple maxima it is possible for

EM to get stuck at a local maximum, in which case our estimate would depend on the

initial guess used to start iteration. In section 1.7.3 we saw that choosing a starting

point with αj = 0 for some j forever restricted the updates to that hyperplane. For

this reason the starting point is always chosen such that αj > 0∀j. (A typical choice
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is αj = 1.) The projection-mode EM algorithm is known to have a unique fixed-

point, provided one starts somewhere in the positive orthant [Byrne, 1993]. Parra

and Barrett [1998] showed that list-mode EM converges to a unique fixed point when

the likelihood function is strictly concave; it is not obvious (at least to this author)

that in practice list-mode likelihood functions are concave.

Much of the analysis of the EM algorithm has been done in a general context,

without assuming the Poisson properties yielding the specific update in (1.32). Such

an analysis only guarantees convergence to a local critical point of the likelihood, not

to the global maximum, unless the likelihood is strictly concave. It is theoretically

possible for the general version of the EM algorithm to become stuck at a saddle point

(see Lange [1999] for an example), though in practice this doesn’t occur. For the

imaging applications we are interested in, the likelihood seems to be a well-behaved

function, as we shall see in chapter 2.

1.7.6.3 Non-uniqueness due to a non-identifiable parameter Do there exist α1,α2

such that α1 6= α2 yet p(g|α1) = p(g|α2) ∀g? If so then, even in the asymptotic

limit of infinite data, there is no way to distinguish between α1 and α2, and there is

no unique ML estimate. Conversely, if we know

p(g|α1) 6= p(g|α2) (1.46)

and p(Nlist|α1) 6= p(Nlist|α2) (1.47)

∀α1,α2 s.t.α1 6= α2 (1.48)

then, in the asymptotic limit of infinitely many list entries, we can distinguish between

any two objects. We refer to this as the parameter being identifiable. In the next

section we will derive conditions for identifiability and examine what happens in its

absence.

Harris [1964] considered the question of distinguishing between a single-star and

a double-star. He showed that if the parameter specifying the number of stars in
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the likelihood model is identifiable, then in the limit of infinitely many photons one

can distinguish between arbitrarily close stars. Furthermore, in this special case it

is reasonable to believe that this parameter of the likelihood is identifiable even for

real-world imaging systems. Note that the availability of an infinite number of list

entries is essential for this conclusion. Our real-life experience that distinguishing

between single- and double-stars is difficult is largely due to the paucity of photons

available to us. In chapter 3 we shall consider this matter in more detail.

1.8 Null and Measurement space decomposition in list-mode
systems

This section reviews the null/measurement decomposition of object space familiar

from the traditional linear-systems view of imaging and extends the idea to list-mode

systems. The binned-mode version of the decomposition is thoroughly discussed by

Barrett and Myers [2004, chapter 1]; the list-mode extension is novel.4 The discussion

in this section focuses on a discretized object α. A similar analysis for a continuum

object f(r) ∈ L2 is found in chapter 4. The two analyses are equivalent only for the

for the special case where all φj define estimable parameters. (The definition of an

estimable parameter will be given in chapter 4.)

The fundamental equations of linear noise-free imaging are

g = Hα (1.49)

for imaging systems viewing discretized objects and

g = Hf(r) (1.50)

for systems viewing continuum objects. These are the same α and f(r) as in (1.2) and

(1.1) respectively, albeit for a static object. Here g represents the entire binned-mode

data set, while in the equations we saw earlier gi was just one list entry.

4Eric Clarkson provided valuable help with this section.
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Because H and H are linear operators they partition the object space into two

orthogonal subspaces: the null space and its complement the measurement space.

Any object can be written as the sum of measurement and null components:

α = αmeas + αnull, (1.51)

f(r) = fmeas(r) + fnull(r). (1.52)

The measurement components pass through the system, while the null-space compo-

nents are mapped to zero by H or H, and are therefore invisible to the system:

Hαnull = 0 (1.53)

Hfnull(r) = 0. (1.54)

Thus one cannot distinguish between f(r) and fmeas(r), even in the limit of no mea-

surement noise. One can construct many objects consistent with the noise-free data

g by adding arbitrary null functions to fmeas(r).

A similar decomposition of object space exists for list-mode systems. Here we

focus on the discretized vector case. Two objects α1 and α2 are indistinguishable by

a list-mode system, even in the limit of an infinitely long data list, if

p(gi|α1) = p(gi|α2) ∀i (1.55)

and p(N list|α1) = p(N list|α2). (1.56)

When seeking null functions we are seeking α1 6= α2 which satisfy (1.55) and (1.56).

Using (1.16) and (1.17), we see that

p (gi|α1) =
∑

j

p
(
gi

∣∣originated inφj(r)
)
p(φj(r)|α) (1.57)

=
∑

j

p
(
gi

∣∣originated inφj(r)
)α1jsj

N list

=
∑

k

p
(
gi

∣∣originated inφj(r)
)α2ksk

N list

(1.58)

= p (gi|α2)
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must hold for such α1 and α2. (The double subscript on α is used to indicate both

which component of the vector and whether we have object 1 or 2.) Therefore∑
j

p
(
gi

∣∣originated inφj(r)
)
α1jsj =

∑
k

p
(
gi

∣∣originated inφj(r)
)
α1ksk. (1.59)

Define the kernel hj(gi) of the system operator to be

hj(gi) = p
(
gi

∣∣originated inφj(r)
)
sj. (1.60)

In (1.49) the system operator H, a matrix, is a discrete-to-discrete operator; in other

words it maps a vector f to another vector g. In the list-mode case the system

operator maps a discrete vector α to a continuum function of possible list entries

gi. (Similar discrete-to-continuum operators are found in the analysis of consistency

conditions for the continuum-to-discrete system of (1.52).)

Regrouping (1.59) gives ∑
j

hj(gi) [α1j − α2j] = 0. (1.61)

In other words, α1 −α2 is in the null space of the list-mode imaging system.

If the functions hj(gi) are linearly independent then the system has no null func-

tions other than the trivial α = 0, and we are guaranteed that different values of α

produce different probability laws. In practice showing linear independence may not

be hard! For example, if we assume p
(
gi

∣∣originated inφj(r)
)

is a Gaussian, then hav-

ing different a mean µj for each region φj(r) would be sufficient. Note that if we are

fitting the parameters hidden in p
(
gi

∣∣originated inφj(r)
)

from calibration data then

we will only be able to make conclusions about the null functions after calibration is

complete.

As in the binned-mode case, null functions need not be physically realizable. In

particular, although the physics constrains αj ≥ 0∀j for physical objects, we allow

αj to go negative for null functions. The additional constraint of (1.56) places a limit
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on how far negative αj may go. By (1.12) we know that

Nbasis∑
j=1

αjsj > 0. (1.62)

So, just as in the traditional case of a linear binned-mode system, we can decom-

pose the object α into null and measurement components αnull and αmeas. Because

αnull is invisible to the imaging system, we can only make inferences about αmeas. All

properties of the binned-mode decomposition, for example bounds on αnull because

we have a positivity constraint αj ≥ 0, carry over to the list-mode case.

As with the binned-mode null/measurement decomposition, which considers the

optimistic limit of no measurement noise, this analysis considers only what happens

in the limit of infinite list entries. It therefore places a boundary on what is achievable

in the best-case, but doesn’t tell us anything about how much worse things get in the

presence of noise and modeling error. For that we need the techniques discussed in

the next section.

1.9 Quality assessment of reconstruction algorithms

Asserting as we did in section 1.7.5 that the true maximum-likelihood reconstruc-

tion, for example obtained by running the EM algorithm to convergence, produces

less useful images than stopping after only a few iterations begs the question: how

do we know there is a difference in image quality, and how can we quantitatively

measure that difference? This section provides a brief introduction to the quality-

assessment of reconstruction algorithms. Chapter 3 will use these ideas to compare

several reconstruction algorithms.

The word “useful” in the previous paragraph hints at our approach. The recon-

struction algorithm is not, alas, itself of interest to many people. Nor is the physician

or physiologist interpreting the images especially interested in the reconstructed image

for its own sake. Rather, as discussed in section 1.1, they want to extract information
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from the image to perform some clinical or scientific task. So to claim one reconstruc-

tion algorithm is better than another, or equivalently to say it produces better quality

images, is really to say that it helps the photointerpreter more accurately perform

the task at hand.

Relating algorithm quality to task performance may mean there is no “best”

algorithm; different tasks may have their own optimal algorithms. For example, in

many medical imaging situations it is common to produce an initial scout image,

used to position the patient and select which anatomical region to focus on. Rapid

reconstruction is crucial for this task; the person operating the system wants real-

time feedback. For this task reconstruction time is an important part of algorithm

quality assessment. On the other hand, it may be acceptable for the radiologist to

wait an hour after imaging, if the extra time enables a slower reconstruction algorithm

yielding a more accurate diagnosis. Just as different imaging modalities are chosen for

different clinical tasks, we may choose different reconstruction algorithms for different

jobs.

The sorts of clinical and scientific tasks we are interested in can be divided into

several categories:

Quantitative estimation tasks where the goal is to produce a single number. How

many mCi of activity are in the liver? What is the volume of this tumor? What

is the rate at which the kidney filters the radiotracer out of the bloodstream?

Detection tasks Does this patient have a tumor? The objective of a detection task

is to decide whether or not a specific signal is present in the image. In medical

contexts the signal is usually a lesion or tumor. It could also be a bone fracture

or arterial narrowing. In military contexts the signal may be a tank or an

airplane.

Discrimination and classification tasks Is this lesion malignant or benign? Are

we seeing one large or two small lesions? The goal is to assign the image into
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one of several classes. The special case where we discriminate between only two

classes is especially important—note that detection tasks can also be thought

of as binary discrimination tasks.

Expository tasks for which the objective is to produce an image for use in teaching

or research publication. Unlike the other tasks, where we are concerned with

answering questions about a specific patient, in exposition we often have access

to images from many patients and must choose one patient that illustrates a

point. Quantitative quality metrics would require us to worry about the impact

of this image on student test scores or the researcher’s tenure committee, both

of which are far afield from our main topic.

Aesthetic tasks in which the object is to produce an image with artistic value. We

shall not further consider expository or aesthetic tasks, as quality assessment is

fundamentally different than for the other tasks.

Because we are interested in the quality of the reconstruction algorithm, not in the

quality of a specific reconstructed image, the assessment must be statistical in nature.

Most imaging systems are used with many patients, so the quality assessment must

consider that ensemble.

The reader is cautioned that “image quality” is a dangerous term, because dif-

ferent communities have radically differing opinions on what it means. The biggest

dichotomy is between those who are interested, as we are, in the ensemble behavior of

an imaging system and those who have a specific image in hand and want to know the

quality of that image. When using an ensemble approach it is prudent to emphasize

that one is interested in performance of the entire imaging system across a range of

objects, not just in one image.
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1.9.1 Ensemble mean error

In principle, the ensemble mean error (EMSE)〈〈∥∥∥f(r, t)− f̂(r, t)
∥∥∥〉

g|f

〉
f

(1.63)

seems like a good way to measure reconstruction algorithm quality. Because we have

specified that f ∈ L2, the 2-norm∥∥∥f(r, t)− f̂(r, t)
∥∥∥2

=

∫∫ (
f(r, t)− f̂(r, t)

)2

drdt, (1.64)

also known as the mean square error (MSE), seems the most natural way of measuring

reconstruction error for one image. Averaging over all objects that may be placed

into the imaging system and over all possible noise realizations leads to (1.63). EMSE

suffers from several serious flaws that make it inappropriate to use for assessment of

reconstruction-algorithm quality.

First, any kind of mean error requires both f(r, t) and f̂(r, t) to be in the same

Hilbert space. This is not a problem for us, as our reconstruction α̂ can be mapped

into the same space as f(r, t) using (1.2). However many reconstruction algorithms

do not ensure that f(r, t) and f̂(r, t) are commensurable; various ways to proceed in

that case are discussed by Barrett and Myers [2004, section 13.3.2]. (The Rayleigh

task simulations we will see in chapter 3 have the object in a different space than the

reconstructed image.)

Second, EMSE can be difficult to calculate in practice. Usually Monte Carlo

methods are the only way to estimate the expected value in (1.63). Therefore we

need to be able to draw many samples fk(r, t) from the ensemble of objects. Doing

so for realistic objects is not trivial, although usable techniques now exist. Even

worse, we need to know the true fk(r, t) to compute the norm; merely knowing the

true α is not enough, as εtrunc also contributes to (1.63). Realistically this means

we can only use EMSE in simulation studies with a discretized object or in carefully

controlled phantom studies.
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Third, any type of square-error penalizes large deviations more severely than small

ones. If one is serious about minimizing EMSE, it is desirable to deliberately intro-

duce small errors in a systematic fashion such that the likelihood of a large error is

reduced. This is Stein’s famous paradox; see Efron and Morris [1977] for a readable

introduction.

Fourth, there is growing evidence that EMSE is a poor predictor of observer per-

formance on photointerpretation tasks. Miguel Eckstein and colleagues have studied

the effect of the specialized reconstruction algorithms used in the field of lossy image

compression on tasks related to the diagnoses made in coronary angiography. In this

case f(r), the digital image before compression, is known exactly, as is the recon-

structed (a.k.a. decompressed) image f̂(r), so (1.63) is easy to calculate. They have

found that EMSE does not accurately predict performance on a lesion detection task,

for details see e.g. Zhang et al. [2004a,b].

Fifth, the 2-norm is not the only possible norm. In particular the 1-norm is also

natural, since the physics of nuclear medicine restrict us to f(r, t) ∈ L1 ∩ L2. The

∞-norm also seems reasonable. The relationship between either of these norms and

photointerpretation task performance has not been carefully studied, and may not

exist.

The various forms of ensemble error are most appropriate when we are consid-

ering a quantitative estimation task. In this task we aren’t interested in accurately

estimating the full f(r, t), but just some functional Θ [f(r, t)]. A linear functional

can be written as

Θ [f(r, t)] =

∫∫
f(r, t)W (r, t)drdt, (1.65)

for some weighting function W (r, t). Nonlinear functionals are also possible.
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Some possible FOMs in this case are〈〈∣∣∣Θ [f(r, t)]−Θ
[
f̂(r, t)

]∣∣∣2〉
g|f

〉
f

(1.66)〈〈∣∣∣Θ [f(r, t)]−Θ
[
f̂(r, t)

]∣∣∣〉
g|f

〉
f

(1.67)

max
g,f

∣∣∣Θ [f(r, t)]−Θ
[
f̂(r, t)

]∣∣∣ . (1.68)

It is not obvious that these ensemble mean functional errors are closely correlated

with the ensemble mean errors such as (1.63). To the best of my knowledge the

question has not been studied. (Note that if Θ is not an estimable parameter then

even in the absence of measurement noise these expected values are not zero, see

chapter 4.)

1.9.2 ROC analysis for detection and discrimination tasks

In detection and discrimination tasks we reduce the entire image to a single bit of

information, a tremendous dimensionality reduction. By examining how accurately a

human photointerpreter estimates this bit, in other words how accurately the image

observer performs the task, we can quantitatively measure the quality of a reconstruc-

tion algorithm for this task and observer. This section gives only a brief introduction

to quality assessment of binary decision tasks. For further details see Green and

Swets [1966] or Barrett and Myers [2004]. A nice non-mathematical introduction to

the same ideas, targeted towards public-policy makers, is given by Swets et al. [2000].

To make the ideas concrete, we shall always use the vocabulary of signal detection

theory, even though any binary discrimination task can be analyzed using this frame-

work. Therefore the two hypothesis we must choose between are Ha: signal absent,

and Hp: signal present. (The decision not to label one of the choices H0 is deliberate.

Here we are choosing between two competing and well-defined alternatives. In clas-

sical hypothesis testing one “fails to reject” the null hypothesis, but never “accepts”
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it.) We shall use Da and Dp to indicate the observer’s decision of signal absent or

present, respectively. The observer is constrained to these two choices—saying “not

sure” is not an option.

Percentage of correct signal detections is the most obvious candidate for a quality

metric, but it is an inappropriate measure of quality because of its dependency on

signal prevalence. Consider a hypothetical screening program for a rare form of cancer,

found only once in 10,000 patients. An observer who always picks Da (no cancer)

without even looking at the image will be 99.99% accurate, and yet never detect a

single case of cancer.

Instead we should consider the conditional probability of correct diagnosis given

the patient’s true status. There are several equivalent ways to do so. In keeping

with convention in the imaging community, the parameters we shall consider are

probability of detecting a signal that is actually present, p(Dp|Hp), and the false-

alarm rate, or probability of detecting a signal when no signal is present, p(Dp|Ha).

Because the observer only has two choices, other parameters of interest are directly

related to these, for example the probability of missing a present signal

p(Da|Hp) = 1− p(Dp|Hp). (1.69)

Table 1.2 relates these terms to those used in other communities.

Deterministic binary-discrimination algorithms can always be modeled as a two-

step process. First, the input data are processed, perhaps nonlinearly, to compute a

single scalar called the test statistic. Second, the test statistic is compared with a

threshold. If the test statistic is greater than or equal to the threshold the decision

is Dp, signal present. Otherwise the decision is Da, signal absent.

A deterministic algorithm is one that always produces the same answer for a given

data set; this eliminates random decision rules. Note that human photointerpreters

are not deterministic—people will interpret the same image differently at different

times. We shall sweep this under the rug. To rigorously handle it one would also
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false-alarm rate p(Dp|Ha), the probability of deciding the signal is
present when in actuality it is absent.

probability of detection p(Dp|Hp), the probability of correctly deciding the
signal is present.

TPF True-Positive Fraction, p(Dp|Hp), another way of say-
ing probability of detection.

FPF False-Positive Fraction, p(Dp|Ha), another way of
saying false-alarm rate.

FNF False-Negative Fraction, p(Da|Hp) = 1− p(Dp|Hp).
TNF True-Negative Fraction, p(Da|Ha) = 1− p(Dp|Ha).

sensitivity p(Dp|Hp), how MDs pronounce probability of detec-
tion.

specificity p(Da|Ha) = 1 − p(Dp|Ha), another way of saying
TNF.

prevalence p(Hp), the probability the signal is present.
Type-I error rate p(Dp|Ha), how statisticians pronounce false-alarm

rate.
Type-II error rate p(Da|Hp) = 1−p(Dp|Hp), how statisticians say FNF.

Table 1.2. Various terms used in ROC analysis, and equivalent vocabulary used in
other disciplines.

need consider the ensemble of repeated readings of the same image in addition to the

ensembles of images and readers.

Associated with the test statistic t is a signal to noise ratio

SNRt =
〈t〉Hp

− 〈t〉Ha√
σ2

Ha
+σ2

Hp

2

. (1.70)

SNRt is often used as a FOM for the test statistic.

Each value of the decision threshold has associated with it a probability of detec-

tion p(Dp|Hp) and a false-alarm rate p(Dp|Ha). Increasing the threshold will lower

both the probability of detection and the false-alarm rate. The aforementioned hy-

pothetical observer who always says “signal absent” is using a threshold of +∞.

Figure 1.9 shows the probability of detection plotted against false-alarm rate,

where both are parameterized by the decision threshold. This graph is called the

Receiver Operating Characteristic (ROC) curve. ROC analysis originated during

World War II in the radar processing community and has since been applied to
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0
10

ROC curve

Chance line

Probability of detection

False alarm rate

Figure 1.9. Sketch of an ROC curve. The decision threshold parameterizes the
curve, with a threshold of −∞ corresponding to the upper right corner and +∞ to
the lower left. The area under the curve (AUC) is shaded gray. The diagonal dashed
line corresponds to the random observer described in section 1.11.3.
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photointerpretation tasks in many domains.

Reconstruction algorithms may be compared by plotting ROC curves for both

algorithms on the same set of axes. For a given false-alarm rate, the highest curve

corresponds to the best algorithm. There is no a-priori reason why ROC curves for two

different imaging systems may not cross; indeed in practice this does occur. Thus in

different regimes of acceptable false-alarm rate different algorithms may be better. It

is the combination of reconstruction algorithm and observer (or decision algorithm)

that is being compared. Changing the observer could change which algorithm is

better. Ideally, when comparing reconstruction algorithms, one should average over

the performance of several human observers. If that is too expensive, model observers

designed to mimic human performance may be used.

There is considerable evidence that thresholds vary under various circumstances.

For example, some radiologists are more aggressive than others, i.e. they operate at

different points on the ROC curve. Prior knowledge about a patient may also affect

the threshold; chest x-rays of a patient with a forty-year history of smoking two packs

a day will be read differently those of a twenty year old who never smoked. Thresholds

may also drift over time. A good example can be found in mammography. As the

risks associated with needle biopsy have decreased, radiologists have referred more

patients for biopsy, increasing both the probability of detection and the false-alarm

rate.

It is often desirable to reduce the information in an ROC curve down to a single

number. There are many ways of doing so, but the most widely used is to compute the

area under the curve (AUC). Better algorithms will have higher AUCs. A nice feature

of AUC is that it can be estimated without computing the full ROC curve by doing

a two-alternative forced choice (2-AFC) experiment. In a 2-AFC study the observer

is shown many pairs of images, in which exactly one of the images contains a signal.

The observer must choose which of the pair contains the signal. The proportion of

correct decisions can be shown to be an unbiased estimator of the AUC. The AUC
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is also related to the SNRt of (1.70):

AUC ≈ 1

2
+

1

2
erf

(
SNRt

2

)
. (1.71)

The equation is exact when the test statistic is normally distributed under both

hypothesis.

1.10 Model tasks

Ideally, an imaging system should be evaluated using actual clinical data. However,

doing so is difficult and expensive, prohibitively so for those doing basic research

on system design. Running a new clinical trial each time one changes a system

parameter is impossible. As a result the community has developed a variety of model

tasks, which serve as proxies for actual clinical tasks.

A good model task has several conflicting desiderata:

� The model task should be amenable to theoretical analysis. We would like

closed-form solutions for all relevant probabilities and the observer’s optimal

strategy.

� There should be a clear gold standard. One of the major difficulties in as-

sessment of clinical task performance is knowing the true state of the patient.

Often the imaging system under consideration is the best diagnostic we have;

as a result assessing its accuracy is difficult. Model tasks bypass this problem.

� The task should be easy to simulate. We want to generate a large number of

sample images which can be presented to the observer(s) while measuring task

performance.

� The task should be realistic and similar to actual clinical tasks. The holy grail

is a model task that passes the Turing test: can a trained photointerpreter

tell whether she is reading a simulated image generated for a model task or an
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actual image from the clinic? (Fortunately we can learn a lot from model tasks

which fail this test.)

� We would like to know the strategies that observers use to perform the model

task. This is often possible if the task can be related to psychophysical experi-

ments.

1.10.1 Signal known exactly (SKE) tasks

The most common type of model task is called the Signal-Known-Exactly (SKE)

paradigm. Other binary decision tasks, for example the Rayleigh task which we shall

discuss in detail in chapter 3, can also be studied in the same framework. In an SKE

task the observer must decide whether or not a known signal is present in the image.

All relevant parameters of the signal are known to the observer, including location,

size, shape, orientation, and so on. By eliminating search from the model task we

consciously trade realism for the other desiderata. (But note that one way to model

search for a known object is to perform an SKE task at each possible location!)

In the SKE paradigm we assume that the object can be decomposed into back-

ground and signal components,

f(r) = b(r) + s(r). (1.72)

Medical examples of a signal include tumors, bone fractures, and strokes; the back-

ground is the surrounding tissue. Although the signal in an SKE task is, by definition,

known exactly, the background need not be. Choice of background can have a large

impact on task performance, as shown by Myers et al. [1990]. For example, detecting

a faint signal on a flat background is much easier than detecting the same signal on

a complicated texture. If the reconstruction algorithm has tunable parameters, say

the number of EM iterations, changing the nature of background is likely to affect

the optimal choice of parameter value.
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The special case where the background is known exactly (BKE) is widely used. In

an SKE/BKE model task the signal contrast is usually low and the various sources

of measurement noise high. Another, more realistic, possibility is the case where

the background is random but known statistically (BKS). The lumpy background

developed by Rolland and Barrett [1992] and used in section 3.2.2 and is an example.

1.11 Model observers

In section 1.9 we observed that measuring the task performance of human photoint-

erpreters is the preferred way of assessing the quality of a reconstruction algorithm.

Doing experiments with actual human observers presents a variety of logistical hur-

dles: first one must get permission from the Human Subjects Committee, then one

must gather several observers and have them perform the task on a collection of im-

ages. This is time consuming and requires a budget to recompense the observers.

(Even in the most optimistic case, a certain amount of beer and pizza is required.)

A variety of model observers have been invented to avoid these problems. A model

observer is an algorithm used to predict human performance or to analyze the the-

oretical bounds on task performance. Model observers may also be used to perform

the task in place of, or in assistance to, a human observer. This section describes

several of the most widely used observers, including the ideal observer, the Hotelling

observer and the channelized-Hotelling observer (CHO).

It is important to note that we are primarily interested in using the model ob-

server to predict human task performance, not to actually perform the task. The

channelized-Hotelling observer we will use in chapter 3 to assess reconstruction algo-

rithm quality is deliberately suboptimal, and more accurate algorithms are known. If

we wanted a machine to perform the task we would use one of these better algorithms!
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1.11.1 Ideal observer

The first model observer we shall consider is called the Bayesian ideal observer, or

simply the ideal observer. It is of considerable theoretical interest, despite being

a poor model of human performance on many tasks. The ideal observer is almost

omniscient—it fully understands all of the relevant probability laws: The ideal ob-

server knows the prior probability p (f(r)) of placing an object into the system. And

it knows all about the imaging system’s blur and measurement noise, in other words

it knows p ({gi}|f(r)). It doesn’t even have to worry about modeling error! The only

thing the ideal observer doesn’t know is the object’s true state. The ideal observer is

therefore able to compute the likelihood ratio

tideal =
p ({gi}|Hp)

p ({gi}|Ha)
, (1.73)

and thus make the most accurate inference possible given then constraints of the

imaging system. It provides an upper bound on the performance of humans or any

other observer. Computing is often easier with the log of the likelihood ratio:

λideal = log (tideal) = log [p(gi|Hp)]− log [p(gi|Ha)] (1.74)

In practice we are able to calculate the ideal observer’s performance only for sim-

ple model tasks, although there has recently been progress in estimating performance

on more complicated tasks. We shall mostly ignore the ideal observer, as it is pro-

hibitively expensive to calculate for the model tasks we have in mind.

Furthermore, the ideal observer is of little use in assessing image reconstruction

algorithms, because it acts on the raw data. In the case of modular gamma-camera

data, the ideal observer considers a list of 9-dimensional PMT data, not the much

higher-dimensional reconstructed image. (The ideal observer is useful for hardware

designers, as it measures of how much information about the task passes through

the imaging system, and thus gives an upper bound on reconstruction algorithm

performance.)
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1.11.2 List-mode ideal observer

Barrett et al. [1997] considered the list-mode ideal observer for an SKE task. They

show for fixed-time imaging the log of the likelihood ratio is

λideal = Nlist|a −Nlist|p +

Nlist∑
j=1

log

[
hp(gj)

ha(gj)

]
, (1.75)

where

hi(gj) = Nlist|i p
(
gj|Hi

)
. (1.76)

They also show for list-mode data the ideal observer’s SNR (1.70) on an SKE/BKE

task is:

SNR2 =

{∫
dg
[
hp(g)− ha(g)

]
log
[

hp(g)

ha(g)

]}2

1
2

∫
dg
[
ha(g) + hp(g)

]
log2

[
hp(g)

ha(g)

] . (1.77)

1.11.3 Random observer

The random observer ignores the data and performs the signal detection task solely

by chance. More precisely, it performs a Bernoulli trial with the desired probability

of detection pd and false-alarm rate of 1 − pd. The random observer’s ROC curve is

a diagonal line, as shown in figure 1.9, with an AUC of 0.5.

The random observer is of theoretical interest because flipping a coin should pro-

vide a lower bound on the task performance of any observer. After all, any observer

whose ROC curve goes below the chance line could just invert its decision. It is

sobering to note that photointerpreters performing worse than the random observer

are well documented. [Swets et al., 2000]

1.11.4 Hotelling observer

The Hotelling observer performs a binary-decision task by computing a linear func-

tional of the data and comparing it with a threshold. For some simple model tasks
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it can be shown that the Hotelling observer is the ideal observer, though in most

cases the ideal observer is nonlinear. The Hotelling observer’s appeal lies in its ease

of calculation (at least when compared with the ideal observer) and amenity to theo-

retical analysis. It is often used as a proxy for the ideal observer. This section gives

the major results; detailed theory of the Hotelling observer, including extension to

non-binary classification tasks, is developed by Barrett and Myers [2004].

The Hotelling observer can be expressed simply in vector notation:

tHot = wtx, (1.78)

where x represents the data, t means matrix transpose, w is a template vector of

weights, and tHot is the scalar test statistic. The switch in notation from g to x is

deliberate, because the Hotelling observer is used in various ways. When applied

to a reconstruction, x is the reconstructed image. Below we shall consider a single

data-list entry to be x. In section 1.11.6 x represents channel outputs. In all three

cases the test statistic tHot is a linear function of the x.

The weighting template incorporates the first and second moments of x:

w = K−1
x ∆x, (1.79)

where K−1
x is the average covariance matrix of the data under both hypotheses

Kx =
1

2

(
Kx|Ha + Kx|Hp

)
, (1.80)

and ∆x is the difference of the mean vectors under both hypotheses

∆x = 〈x〉Hp
− 〈x〉Ha

(1.81)

One should use the true population values for the means and covariances, but in

practice we sometimes estimate them from a training sample.

The Hotelling observer’s SNR, as defined in (1.70), is

SNR2
Hot = ∆xtK−1

x ∆x (1.82)

= trace
[
K−1

x ∆x∆xt
]
. (1.83)
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The SNR is also sometimes called the Hotelling trace because of (1.83).

In the case where x represents an image it can be difficult to estimate the co-

variance of the image Kx. If x represents an n × n image it has n2 pixels and Kx

has n4 elements. Directly estimating the covariance would require a huge library of

training samples, O(n4) images for each hypothesis. If n = 64 we’d already be into

the tens of millions. There are several ways to avoid this dimensionality problem. The

channelized-Hotelling observer, presented in section 1.11.6, is one. Other approaches

are outlined in Barrett et al. [2001].

Note that even for a low-dimensional x, a large number of training samples may

be needed to accurately estimate SNRHot if the statistics are non-Gaussian. This was

the case for the list-mode Hotelling observer calculations in section 3.4.1, where x

consisted of the 9 PMT values for one scintillation event from a non-trivial object

1.11.5 Naive list-mode Hotelling observer

When list entries are i.i.d., as is the case for the systems we are interested in, the

naive list-mode Hotelling observer is easy to compute. (The adjective naive is used

to distinguish this Hotelling observer from the other list-mode Hotelling observer

introduced in section 4.4.) First consider the Hotelling observer acting on a single

list entry,

wgi
= K−1

gi
∆gi, (1.84)

which yields

SNR2
gi

= trace
[
K−1

gi
∆gi ∆gi

t
]
. (1.85)

If we have a list with Nlist entries it can be written as a single vector

glist =

 g1
...

gNlist

 (1.86)
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by concatenating the list entries. The covariance matrix of the entire list will be block

diagonal

K list =


Kgi

Kgi

0
. . .

0 Kgi

 . (1.87)

As a result the Hotelling trace of the whole list is easy to calculate:

SNR2
list = NlistSNR

2
gi

(1.88)

In other words the list-mode Hotelling observer’s SNR increases as
√
Nlist, a result

which should not be surprising. It is not clear how useful a figure of merit (1.88)

is. Because the list entries have non-Gaussian statistics, the ideal list-mode observer

will be highly nonlinear. The list-mode Hotelling observer thus serves as an easy-to-

compute lower bound on the performance of the list-mode ideal observer.

1.11.6 Channelized-Hotelling observer

The channelized-Hotelling observer (CHO) was introduced by Myers and Barrett

[1987]. The CHO reduces dimensionality by filtering the reconstructed image with a

bank of channels. The output of one channel is usually computed by taking the inner

product of a reconstructed image and a template mask

ci = m†
ix. (1.89)

Equivalently the output of all channels can be written as the result of a matrix

multiplication

c = Mx. (1.90)

(In the pattern-recognition literature c is called a feature vector.) We focus on linear

channels for simplicity and because in practice they produce useful results. There is

no reason one couldn’t use nonlinear channels.
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The precise choice of channels will depend on the type of observer we are modeling

with the CHO. If the CHO is being used to approximate the Hotelling observer acting

on the full image, one should use sufficient channels, whereas when approximating

human observer performance it is more appropriate to mimic the human visual system

with anthropomorphic channels. We focus on the latter case, but for completeness

briefly discuss the former.

1.11.6.1 Sufficient channels Sufficient channels do not lose any information dur-

ing the dimensionality reduction from image space to channel space. The ideal or

Hotelling observer acting on the output of a set of sufficient channels computes the

same decision as the un-channelized-ideal or un-channelized-Hotelling observer re-

spectively. In the language of statisticians, the sufficient channels are a sufficient

statistic for the full image.

In practice we don’t know how to rigorously prove a set of channels is sufficient for

any non-trivial task. However it may be possible to create approximately-sufficient

channels, in other words produce channels that do a good job of approximating the

unchannelized observer. Gallas and Barrett [2003] provide one example of how one

might do so, using the CHO to estimate the true-Hotelling observer. Gallas [2003]

suggests one might be able to use training data to search for approximately sufficient

channels.

Others have used the phrase “efficient channels” to describe the same concept.

My objection to the word “efficient” is that it triggers principal-components intuition

in those who are hearing the concept for the first time. Too often they latch onto the

principal-components idea and never figure out what is really happening.

1.11.6.2 Anthropomorphic channels On the other hand, if the CHO is being used

as a predictor of human performance, we should use anthropomorphic channels that

mimic known properties of the visual system. This is the case we are interested in.

There is considerable physiological and psychological evidence that the human visual
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system employs some sort of channel mechanism. A review of the literature is given

by Barrett and Myers [2004, sec. 14.2.1].

There are several ways to construct anthropomorphic channels. For a rotationally-

symmetric task Abbey [1998] had good success with channels constructed from the

difference of Gaussians. Because in chapter 3 we shall be interested in a task with

an obvious orientation axis, we focus on the Gabor channels introduced by Watson

[1983]. Watson showed the Gabor channels accurately predict human performance in

a variety of psychophysical experiments. More recently the set of 80 Gabor channels

described here has been successfully used in a variety of medical-imaging contexts

[Eckstein et al., 1998, 1999; Shimozaki et al., 2003; Zhang et al., 2004a,b].

Each channel template consists of a Gaussian envelope function multiplied by an

oriented sinusoidal grating:

c(x, y) = exp

[
−4(ln 2)

x2 + y2

w2

]
cos [2πf (x cos θ + y sin θ) + β] , (1.91)

where f is grating’s spatial frequency, θ is one of eight equally-spaced orientations, β

is the phase, and the width of the envelope w is related to the frequency by

w =
6 ln 2

πf
. (1.92)

The values used for the other parameters are:

f ∈ {1, 2, 4, 8, 16} , (1.93)

θ ∈
{

0,
π

8
,
π

4
,
3π

8
,
π

2
,
5π

8
,
3π

4
,
7π

8

}
(1.94)

β ∈
{

0,
π

2

}
. (1.95)

Figure 1.10 shows the eighty resulting channel templates.

1.11.6.3 Internal noise The channelized-Hotelling observer often overestimates hu-

man performance, even when using anthropomorphic channels. To lower the CHO’s

performance into the human range, and to model observer uncertainty, the channel
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Figure 1.10. The Gabor-channel templates. Shown are the eighty templates
used by the anthropomorphic channelized-Hotelling observer. Template values range
from -1.0 (black) to 1.0 (white). The gray background visible in many channels has
value 0.0.
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output is often corrupted with noise. Because this noise is found only in the observer

it is called internal noise. Abbey and Bochud [2000] show that randomizing the output

of each channel with Guassian noise is equivalent to adding a single random variable

to the test statistic. Therefore the CHO with internal noise is

tCHO = ∆ctK−1
CHOc + ε, (1.96)

where ε is a zero-mean Gaussian random variable. The variance σ2 of ε is a tunable

parameter.

1.12 Preview of coming chapters

Chapter 2 discusses how to calculate p
(
gi

∣∣originated inφj(r)
)

for a known imag-

ing system, paying special attention to the case where extensive calibration data are

available. This chapter introduces double list-mode reconstruction, a technique where

list-mode calibration data are used to reconstruct the likelihood model and then com-

bine it with list-mode object data to produce a maximum-likelihood reconstruction

of the object.

Chapter 3 looks at the problem of reconstructing projection images from list-mode

PMT data. The image quality of two algorithms is compared by an anthropomorphic

channelized-Hotelling observer performing the Rayleigh task, a traditional measure

of system resolution. One algorithm reconstructs the image by histograming ML

position estimates, while the other uses the list-mode EM algorithm to produce a

fluence estimate.

Chapter 4, originally written as a stand-alone article, considers the question:

which parameters of an object can be accurately estimated from list-mode data?

In the process the notion of a list-mode system operator is developed, as is the list-

mode Hotelling observer. The estimability analysis also suggests an approach to doing

list-mode reconstruction.
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Finally chapter 5 gives the obligatory summary and directions for future work. For

the reader’s convenience appendix A provides a list of abbreviations and acronyms

used in the text.
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Chapter 2

Empirical list-mode likelihood models

This chapter describes several techniques for representing and computing the like-

lihood p
(
gi

∣∣originated inφj(r)
)

that a detected scintillation event gi is associated

with the region defined by φj(r). Although our emphasis will be on the modular

gamma cameras found in FastSPECT-II, the same techniques can be applied to any

list-mode gamma-ray imaging system. As previously discussed in section 1.6, the

likelihood model for a single event is all we need in order to be able to compute the

likelihood of the full data list, provided we ignore scatter and attenuation. Special at-

tention is paid to the case where extensive calibration data, specifically samples from

the likelihood function, are available. Because these models are heavily based on

empirical data, we shall refer to them as empirical likelihood.1 The concept of double

list-mode reconstruction is introduced in section 2.5. Double list-mode is a nonpara-

metric approach where list-mode calibration data are combined with list-mode data

from an object to produce a maximum-likelihood reconstruction of the object.

In practice one may want to combine several of the approaches mentioned below,

for example one could use nonparametric data-driven techniques for some components

of g and analytic parametric models for others. Or one might use different models for

different imaging tasks. For example, one is likely to use a quick-and-dirty approach

to provide real-time feedback to the imaging-system operator, but a slower method

to produce images used for research and publication.

1This use of the phrase “empirical likelihood” is original to the author; as far as I can tell the
statistical community does not have any existing vocabulary for this concept. Instead of empiri-
cal, another possible word would have been observed, by way of analogy with the observed Fisher
information matrix computed by Parra and Barrett [1998].



77

2.1 Available calibration data

A general imaging-system model has free parameters, allowing it to describe many

potential physical systems. This section describes the various forms of calibration

data available for tuning the model. This is chosen as the starting point because

plots of the calibration data such as histograms and scattergrams should suggest

what sorts of models are reasonable. Further details on the calibration process are

given by ?.

2.1.1 Monte Carlo simulated data

Monte Carlo simulation of the measurement process is widely used as a form of calibra-

tion. Monte Carlo techniques are the gold-standard method of generating simulated

data because they can model all sources of randomness in the measurement process.

Simulation results are often used to select or tune the likelihood models used for im-

age reconstruction. Despite the difficulties in coding a simulation which accurately

models an imager, in particular one which correctly captures details of the collimator

geometry and flaws such as hot or dead spots in the detector, this approach is more

prevalent than physically measuring extensive calibration data. (PET systems may

be easier to simulate than SPECT because they don’t have a collimator. Commer-

cial systems often have expensive steps in the manufacturing process to prevent the

“personality quirks” found in the much cheaper modular cameras, and thus also may

be easier to model in simulation.) For systems where it is impossible to measure

calibration data, in particular proposed systems which haven’t yet been built, Monte

Carlo simulation may be the only possible way to proceed.

2.1.2 MDRF data for gamma camera calibration

To assign each detected event to a location on the camera face (position estimation),

or to produce projection images using the 2-dimensional list-mode EM algorithm,
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we need a likelihood model p
(
gi

∣∣originated inφj(r)
)

which relates a data list entry

gi to each region φj(r) on the camera face. This model is usually called the Mean

Detector-Response Function (MDRF), even when it includes higher-order statistics.

Each modular camera has a unique MDRF due to variations in the scintillation crys-

tals, PMT response, and gain process. Therefore each camera must be individually

calibrated.

The MDRF may drift as the scintillation crystal degrades with age. On shorter

time scales, response may be fluctuate with temperature. Ideally the likelihood model

should account for all of these effects, but in practice they tend to be ignored. By

permanently mounting the cameras and carefully controlling climate in the imaging

lab, one can get away with recalibrating the MDRF model only every year or so.

FastSPECT-II MDRF calibration is performed by a robot arm, as shown in fig-

ure 2.1. To gain acess to the camera face during MDRF calibration, the collimator

housing must be removed from the system. Performing the MDRF calibration for

all 16 cameras is labor intensive, because the robot must be manually positioned

over each camera. Once in position, the robot scans a collimated-beam source across

the camera face, stopping at preselected points on a Cartesian grid. A raster scan

is used, because this allows more accurate positioning of the robot’s stepper motors

than would a slightly faster boustrophedonic scan. At each grid point a number of

events are recorded.

Each calibration event can be thought of as a sample from the likelihood function,

p
(
gi

∣∣originated inφj(r)
)
, where j indexes the calibration grid points, and φj(r) is

determined by the spread of the calibration beam. The calibration source is designed

so that

φj(r) ≈ δ(r − rj) (2.1)

is a good approximation. Another reasonable assumption is that

φj(r) ≈ 1

S
rect

(
r − rj

S

)
, (2.2)
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Figure 2.1. Robot arm measuring the MDRF. This robot is used to automat-
ically acquire MDRF calibration data for one modular camera. Note the “space-age”
rubber-band technology used to attach the pencil-beam collimator onto the arm.
(Photo by J. Chen.)
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where S is the grid spacing. This assumption corresponds to the square pixel basis

illustrated in figure 1.7.

The MDRF calibration source is created by placing a syringe cap filled with ac-

tivity at one end of a cylindrical metal holder. A 0.84mm opening at the other end

of the cylinder allows the calibration beam to exit. The cylinder is lined with lead

to prevent the enclosed activity from radiating in other directions. The opening is

held approximately 1.5mm from the aluminum camera face. The collimated beam

has a divergence of 0.056 radians (3.2◦), which results in a beam width within the

scintillation crystal of between 0.84 mm and 0.853 mm. A typical calibration grid

spacing is 1.5 mm, which results in a 78 × 78 grid. Also typical is a count rate of

c. 30 times the background. We usually record approximately 5000 events per grid

point, for a total list-mode calibration file size of c. 523 MiB2 per camera.

It is preferable to have the source above each grid location for a pre-specified time,

as this guarantees Poisson statistics and makes various forms of estimation a bit easier.

Calibration may also be done for a fixed number of counts at each location, but then

the probability models for certain types of estimation are slightly less pleasant.

Figure 2.2 shows histograms of MDRF calibration data for one grid point. For

this figure the MDRF source was located at calibration point (12,12), near the corner

of the camera of PMT3. The pattern seen here is similar to that at other locations.

In particular note that the tube output shows a Gaussian-like peak and may have a

fat left tail. The fat tail, presumably caused by escaped Compton scatter, is strongest

in the tube closest to the calibration point, in this case PMT 3, less pronounced on

neighboring tubes, and not visible on further-away tubes. Peak PMT output has the

highest value close to the source, and decreases with increasing distance from the

2MiB is short for mebibyte, or 220 bytes. It is not just out of pedantry that I write the new
binary prefixes instead of the more widely used, though technically incorrect, decimal prefixes. I
often use units-aware calculators, for example the GNU/Linux command units(1), to predict how
long a file transfer or computation will take. These calculators distinguish between the two types of
prefix, and give different answers depending on which is used.
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tube.

2.1.3 PSF data for system calibration

As in the 2-dimensional case, to produce 3-dimensional and tomographic reconstruc-

tions we need a likelihood model relating a data list entry g to volume regions φj(r)

within the imaging system. This model is usually called the Point Spread Function

(PSF), even though it may account for nonlinear blurring and may be shift variant.

The PSF includes measurement properties of the gamma cameras as well as effects due

to the collimator geometry. Therefore calibration must be done each time the system

geometry is changed, for example by swapping the collimator pinholes, moving the

cameras, or replacing a camera. Because removing the collimator may inadvertently

change the geometry and is necessary for MDRF measurement, PSF calibration must

be done at least as often as MDRF calibration. Fortunately the PSF calibration

runs unattended once started, so it is less labor-intensive than MDRF calibration.

Depending on how subsequent processing is done, the PSF model may be used to

partially correct for errors in the MDRF model due to drift. Therefore it may be

desirable to measure the PSF more often than the MDRF.

PSF calibration of FastSPECT-II is performed by a robot arm moving a source

to locations on a 3-dimensional Cartesian grid within the imaging system, and then

recording number of events at each location. As in the 2-dimensional case, the source

defines φj(r) and we are effectively sampling from the likelihood function. The source

is created by saturating small (50 micron diameter) plastic resin chromatography

beads with pertechnetate solution. The beads are then heated to remove excess

water, allowing more pertechnetate to be added. Finally epoxy is used to glue the

beads together and mount them on glass capillary. The final result is smaller than a

half millimeter in diameter, and therefore approximately a point source:

φj(r) ≈ δ(r − rj). (2.3)
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Figure 2.2. Histograms of MDRF events. The calibration point was (12,12),
located in the corner of the camera near the center of PMT 3. Note the frequency
axes is different for each tube. A scattergram of the same data are shown in figure 2.4.



83

After preparation, the capillary is attached to the robot arm and moved around the

calibration grid.

The PSFs for all cameras in FastSPECT-II are simultaneously calibrated, therefore

measurements are always done for a fixed time at each grid point. As calibration

proceeds, the time at each location must be increased to compensate for radioactive

decay of the PSF source. Fully sampling along the 1 mm × 1 mm × 1 mm grid we

usually use requires about 24 hours (four half lives of 99mTc). The grid points at

which the PSF is sampled can be embedded into a 41 × 41 × 41 Cartesian grid.

In planes perpendicular to FastSPECT-II’s central cylinder only points inside the

inscribed circle are sampled. The list-mode PSF data are about 900 MiB per camera.

Histograms of PSF calibration data for one camera at one grid location are shown

in figure 2.3. Several differences from the MDRF data shown in figure 2.2 are worth

noting. First, there are fewer calibration samples. PSF data typically have fewer

events per camera per grid point than MDRF data, and the variance in the number

of events is higher; for this grid point the number of samples per camera varies from

357 events on camera 14 to 4051 events on camera 6. Second, the left tails are more

pronounced. Third, the data appear to be bimodal. In this plot the bimodality is

especially pronounced for tube 9, and also visible in tubes 5 and 8.

2.2 Parametric models

Among those who do maximum-likelihood reconstruction, a known analytic form is

almost always assumed for p
(
gi

∣∣originated inφj(r)
)
. (ML reconstructions are still

not widely used in the clinic. Variations on Anger arithmetic remain the dominant

technique for 2-dimensional position estimation more than fifty years after their in-

vention. Barrett and Swindell [1981] provide a good introduction to the basic ideas.

For tomographic reconstruction, filtered backprojection and its cousins remain the

incumbents.) Common assumptions used to model statistics of the measurement
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Figure 2.3. Histograms of PSF events. The calibration data was collected from
point (1000,1000,1000), near the center of the imager. Shown are histograms for each
PMT in camera 0.
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process include conditional Poisson, where the mean PMT output µtj of tube t varies

according to grid point j, conditional amplified Poisson, similar to conditional Pois-

son but with a gain process, and conditional Gaussian, where the mean and variance

µtj and σ2
tj vary with grid point j. This section considers several possible parametric

models for the likelihood and looks at how to pick the parameters.

Often a central-limit argument or knowledge of the measurement physics dictates

a particular family of models. The biggest drawback of parametric models is difficulty

in accurately modeling the system when we do not have such a prior reason to pick

a known family. This drawback is usually outweighed by the many advantages of

parametric models. For example, they provide a tremendous data reduction from

the calibration data, are computationally efficient, and are amenable to theoretical

analysis.

There are two basic ways of choosing the parameters. The first, and by far more

widespread, is to model the collimator geometry and detector physics. The second,

used here in Arizona but almost nowhere else, is to make extensive calibration mea-

surements of the sort discussed in sections 2.1.2 and 2.1.3, and then fit the parameters

at each grid point. This is the approach we shall focus on. (As in many other areas,

there is an expense tradeoff here. Commercial manufacturers work hard to produce

hardware for which simple approaches such as Anger arithmetic can be used to esti-

mate the parameters. The modular cameras are much cheaper, but require us to use

more sophisticated calibration and software.)

2.2.1 Conditional Poisson with lookup

The simplest likelihood model is conditional Poisson. This model can be used to

describe the number of photoelectrons produced in the detector by a scintillation

event, but is too simple to describe the output of most PMTs. (For an in depth

discussion of PMT physics see Barrett and Myers [2004].) Note that we are modelling
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the output of one detector element in response to one event as Poisson. It may also

be the case that the number of events obeys Poisson statistics, but that is a not the

issue of interest here.

The Poisson parameter is a function of the region associated with the scintillation

event:

p
(
gt

∣∣originated inφj(r)
)

=
µgt

tje
−µtj

gt!
, (2.4)

p
(
g
∣∣originated inφj(r)

)
=

T∏
t=1

p
(
gt

∣∣originated inφj(r)
)
. (2.5)

The parameter µtj is the mean value (and, as this is Poisson, also the variance) of

photocathode t’s output for a scintillation event associated with region φj(r).

The mean must be estimated from the calibration data. Just as there are many

image reconstruction algorithms, there are also many possible ways to choose µ̂tj.

The maximum likelihood approach is a good candidate for the reasons given in sec-

tion 1.7.1. For the Poisson model, the ML estimate is obtained by computing the

mean value of the calibration data at each point:

µ̂tj =
1

Nlist

Nlist∑
l=1

gtjl. (2.6)

Here is a short proof that the data (sample) mean is the ML estimate of the

population mean:

p ({gtjl}|µtj) =

Nlist∏
l=1

p (gtjl|µtj) (2.7)

=

Nlist∏
l=1

µ
gtjl

tj e−µtj

gtjl!
. (2.8)

The log-likelihood is

l (µtj|{gtjl}) =

Nlist∑
l=1

log

(
µ

gtjl

tj e−µtj

gtjl!

)
(2.9)

=

Nlist∑
l=1

gtjl log(µtj)− µtj − log(gtjl!). (2.10)



87

Because logarithm is a monotonic function, the maximum of the log-likelihood is also

the maximum of the likelihood. To find the maximum we compute the derivative,

dl

dµtj

=

Nlist∑
i=1

gtjl

µtj

− 1, (2.11)

set it to zero,

0 = −Nlist +
1

µtj

Nlist∑
l=1

gtjl, (2.12)

and solve:

µ̂tj =
1

Nlist

Nlist∑
l=1

gtjl. (2.13)

To confirm this is a maximum we compute the second derivative,

d2l

dµ2
tj

= −µ−2
tj

Nlist∑
l=1

gtjl (2.14)

< 0. (2.15)

(The Poisson assumption implies gtjl > 0.)

In practice, we wouldn’t want to use maximum-likelihood to estimate the Poisson

parameter from the calibration data shown in figures 2.2 and 2.3. The fat left tail of

each tube’s histogram, caused by escaped Compton scatters, would pull the mean data

value to the left of the photopeak, resulting in an underestimate of the photopeak

mean. One possible approach is to mask off the tail before computing the mean,

giving a Bayesian estimate of the parameter. Another is to use log-matched filtering

to estimate the parameter [Aarsvold et al., 1988].

2.2.2 Transformed Poisson

In practice we will not find that PMT output obeys Poisson statistics. While the

Poisson model does a good job of describing the number of photoelectrons produced

by the PMT’s cathode, the subsequent gain process violates the Poisson assump-

tions. In some systems, in particular the original modular camera electronics used in
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FastSPECT-I, the Poisson statistics are also broken by applying a square root trans-

form (see section 2.3.1.1). Therefore a more sophisticated approach than computing

a simple mean is called for.

Aarsvold et al. [1988] explain how to handle transformed Poisson variables using

log-matched filtering. Note that their approach relies on a Poisson number of counts,

and thus depends on having fixed-time calibration data.

Advantages of the Poisson or transformed-Poisson approaches include computa-

tional efficiency during reconstruction and a compact representation of the model in

memory. We need only store the mean value, a 4 byte float, per detector element per

calibration location.

2.2.3 Conditional Gaussian with lookup

A conditional Gaussian model can also be used for the likelihood. Unlike the Pois-

son model, the Gaussian model can handle correlation between the different PMTs.

Furthermore, because of the central limit theorem, a Gaussian does a good job of

approximating a Poisson or amplified Poisson if the mean is bigger than about 10.

For real-world PMTs the Gaussian model is better than the Poisson, because it allows

the variance to be different from the mean.

The Gaussian model requires estimation of the mean and covariance of the PMT

values at each grid point. This uses more parameters than the Poisson model, but the

increased size of the parameter lookup table is not a problem for modern computers.

Of greater concern is the increased uncertainty inherent in jointly estimating more

parameters from the calibration data. For a modular camera with T tubes, the

Gaussian model requires T parameters to describe the means and an additional T (T+

1)/2 parameters to describe the covariance matrix. (If we assume the tubes are

statistically independent the covariance matrix becomes diagonal and we just need

to estimate T variances; see section 2.4).



89

As in the Poisson case, the ML estimate of a Gaussian’s mean is the sample

mean (2.6). The ML estimate of the PMT covariance is the sample covariance matrix

K, where

K̂ij =
1

Nlist

Nlist∑
l=1

(gli − gli)(glj − glj). (2.16)

2.3 Nonparametric models

Because our calibration data consists of a large number of samples from the likelihood,

it should be possible to somehow directly use the calibration data in reconstruction

without assuming a specific parametric family for the likelihood. Statisticians refer

to such approaches as nonparametric estimation for obvious reasons. The problem

of nonparametric likelihood estimation falls within the branch of statistics called

density estimation. The next few sections introduce several different nonparametric

ways of estimating the likelihood. In all cases we take advantage of our knowledge

that, for a fixed φj(r), the likelihood p
(
gi

∣∣originated inφj(r)
)

is a probability density.

Therefore we can estimate the likelihood by estimating these densities at each grid

point. Further details on nonparametric density estimation can be found in the

readable introduction by Silverman [1986] and the text by Scott [1992]. The theory

of density estimation in L1—as opposed to the more common assumption of L1∩L2—

is developed by Devroye [1987].

2.3.1 Histograms

The first type of nonparametric density estimate to consider is the histogram. For

a rigorous discussion of the theory and a brief history see the text by Scott [1992].

The basic idea of histograming, doubtless already known to the reader, is to partition

the data domain into a series of bins and then count how many data samples fall

into each bin. If the bin sizes are all equal, the typical case, though perhaps not the
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optimal case, then the only free parameters for the modeler to tune are bin size, or

equivalently the number of bins, and the center points of each bin. Apart from their

conceptual simplicity, histograms are appealing as a density estimator because they

are easy to efficiently implement in software through use of a lookup table.

While choosing the number of bins one encounters the familiar resolution versus

noise tradeoff. A large number of bins means that sharp changes in the density can

be more accurately captured, but also decreases the number of counts in each bin,

thereby increasing the variance (noise) of the estimate. For the case of a 1-dimensional

histogram, Sturges’s rule, derived from error analysis based on a normality assump-

tion, is to divide the sample range into equal sized bins with

Nbins = 1 + log2Nlist. (2.17)

If we have Nlist = 5000, a typical number of calibration events per camera for one

grid point of the MDRF or PSF, then Sturges’s rule suggests Nbins = 13. But the

FastSPECT-II A/D hardware has 212 = 4096 possible output values per PMT. So

histograming this way is a huge reduction in dynamic range! This remains the case

even if one uses a different rule of thumb to choose the bins. (Sturges’s rule is generally

considered to be inappropriate for skewed data. Scott [1992, equation 3.42] suggests

using

Nbins = 3
√

2Nlist, (2.18)

which works out to 22 bins.)

So far we have only considered univariate histograms. Yet the modular gamma

cameras have 9 PMTs. If we used only 13 bins for each dimension, we would still have

139 ≈ 1010 ≈ 234 bins per grid location. Unless we used a sparse representation, stor-

ing the histograms for all PSF grid points would put us outside the memory range not

only of today’s computers but also those in the foreseeable future, even after Moore’s

Law [Moore, 1965] is taken into account. Even if we used a sparse representation

there would be problems. With only c. 5000 samples almost all of the bins would be
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empty, leading to an underestimate of the probability of those values and an over-

estimate for the non-zero bins. The problems with high dimensional histograms (in

this case high means bigger than approximately two) make them inappropriate for

modeling the number of PMTs found in a modular camera.

When modeling the output of a single PMT, there are two options for handling

the gap between the hardware’s 12 bit resolution and the much smaller number of

bins in a histogram. The first is to use adaptive histograms where the range of the

histogram and the bin sizes are adaptively set using the calibration data. Advice on

how to best do this is given by Scott [1992].

2.3.1.1 Variance stabilizing transform The second option, which is easier to program

and works very well in practice, is to apply a square-root transformation to each tube’s

measured value

g′t = sign(gt)
√
|gt|, (2.19)

and then use uniform bins to histogram g′t. This reduces the range of the output

from [-2047, 2048] to [c. -45.25, c. 45.26]. If the outputs of the detectors are assumed

Poisson distributed then the transformed values will have an approximately constant

variance for all values of the mean. (This is a fishy assumption for the modular cam-

era, as Poisson random variables don’t go negative, but digitized PMT outputs do,

nor do Poisson random variables model the sorts of gain process seen in PMTs. In any

case, if you believe a variation on the Poisson assumption applies, you’re better off

with a parametric model, and you don’t need to mess around with histogram or other

nonparametric density estimators.) Because the variance of the square root trans-

form output is approximately constant, it is sometimes called a variance-stabilizing

transform [Bartlett, 1936; Anscombe, 1948].

In practice, we do see negative output from the FastSPECT-II modular-camera

electronics, but the values are only slightly less than zero. The specific approach used

in my reconstruction code is to clip all negative values to zero and only transform
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positive values, rounding down to the nearest integer:

g′t =
⌊√

step(gt) |gt|
⌋
, (2.20)

which results in 46 histogram bins per PMT per grid point. At any given grid location

many of the bins contain zero events, but ignoring this sparseness makes the code

much simpler.

2.3.2 Kernel density estimation

Suppose we want to estimate a 1-dimensional probability density p(x) without know-

ing its parametric form, and are given only a set of N calibration samples cj from

p(x). (We will extend the idea to higher dimensions in a bit.) The kernel density

estimate p̂(x) is

p̂(x) =
1

Nh

N∑
j=1

k

(
x− cj
h

)
(2.21)

=
1

N

N∑
j=1

kh (x− cj) (2.22)

=
1

N

N∑
j=1

δ (x− cj) ~ kh(x), (2.23)

where k(x) is the kernel function, h is a tunable width or smoothing parameter, δ(x)

is the Dirac delta, and ~ indicates convolution. The modeler may choose the kernel

function k(x) and the smoothing parameter h.

Notice if k(x) is itself a probability density, then p̂(x) is guaranteed to also be a

density. (Aesthetically speaking, it is nice for an estimate of a density to actually be

a probability density. However we have already tipped our hand in section 1.9. The

quality of a density estimate is intimately related to overall task performance, and

if an estimate which is not a true density performs better than one which is, so be

it.) Likewise, p̂(x) has the same differentiability properties as k(x). Different choices
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for k(x) have been extensively studied; summaries of what is known are given by

Silverman [1986] and Scott [1992]. Low-order symmetric polynomials such as

k(x) =
3

4
(1− x2) rect(x), (2.24)

and Gaussians

k(x) =
1√

2πh2
exp

(
−x2

2h2

)
(2.25)

are the most common choices of kernel function.

Surprisingly, error analysis within an L2 context has shown that the choice of

smoothing parameter h is more important than choice of kernel. When using Gaussian

kernels, Scott [1992, equation 6.17] suggests choosing the smoothing parameter to be

h =

(
4

3

)1/5

σN−1/5 (2.26)

≈ 1.06σ̂N−1/5. (2.27)

This rule of thumb originates in a Taylor-series analysis of the density estimator’s

ensemble mean square error.

Of course, our calibration data are multivariate, so (2.21) doesn’t apply directly.

The obvious extension is to use a multivariate kernel,

p̂(x) =
1

Nh

N∑
j=1

K

(
x− cj

h

)
. (2.28)

The easiest way to create a multivariate kernel is to use a product kernel:

K(x) =
T∏

t=1

k(xt − cjt), (2.29)

where the t subscript indicates component (for example, the PMT), and the j sub-

script indicates calibration list entry.

Amazingly, very many density estimators, including histograms and even para-

metric families, can be shoe-horned into a generalization of the kernel-density frame-

work. For example, suppose we wish to parametrically estimate a Gaussian density
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with known variance σ2 = 1. The parameter of interest is the sample mean x. Let us

pick as the kernel function

k(x, xi) =
1 + (xi − x)(x− x)√

2π
e−(x−x)2/2. (2.30)

Then the density estimate is

p̂(x) =
1

N

N∑
i=1

k(x, xi) (2.31)

=
1

N

N∑
i=1

1 + (xi − x)(x− x)√
2π

e−(x−x)2/2 (2.32)

=
1√
2π
e−(x−x)2/2. (2.33)

Scott [1992] gives precise conditions for which types of density estimator can be

written in this way, and also explains under which circumstances a density estimator

is nonparametric. Because of this result, error analysis developed in the context of

kernel estimators can often be applied to other density estimators.

2.3.3 The curse of dimensionality

Kernel density estimators have not successfully been used in situations where d > 5.

In low dimensions the tails of a probability distribution only contain a small percent

of the cumulative density, whereas in high dimensions the majority of mass is in

the tails. Thus in low dimensions ignoring the tails doesn’t significantly affect the

accuracy of the density estimator. But in high dimensions one cannot ignore the

tail. In practice, we cannot measure enough calibration samples to fill the probability

space, which prevents the kernel density estimator from doing a good job. Even if one

somehow did measure enough samples, practical computational issues would become

a problem.

This is an example of the phenomenon known as the “curse of dimensionality”.

The phrase was coined by Bellman [1962] to describe how certain problems become
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exponentially more difficult with increasing dimension. A more recent discussion of

the curse is given by Donoho [2000], who also looks at classes of problem that become

easier as the dimension increases. Scott [1992] devotes several chapters to the curse

and its impact on density estimation.

A good way to develop intuition about the curse is to consider the relationship

between the d-dimensional unit hypercube and its inscribed hypersphere. In one

dimension, the two are both the unit line segment, and therefore both have length

1. In two dimensions, the unit square has area one and the inscribed circle has area

π/4 ≈ 0.79. In three dimensions the unit cube has volume one and the unit sphere has

volume π/6 ≈ 0.52. In d-dimensions the unit hypercube has hypervolume 1, and the

inscribed hypersphere has hypervolume 2−dπd/2

Γ( d
2
+1)

, where Γ() is Euler’s gamma function.

As the number of dimensions increases, more and more of the volume is concentrated

in the corners of the unit cube. Similarly, in a many-dimensional Gaussian much of the

mass is contained in the tails of the density. Already in 9 dimensions approximately

half the mass of a Gaussian is found in the tails, see Scott [1992] for the derivation.

2.3.4 Density estimation using the k-nearest-neighbor estimator

The kernel estimator is not the only type of nonparametric density estimator in

widespread use. Another class of estimator, the k-nearest-neighbor (k-NN) estima-

tor, has been successful, especially in high-dimensional classification and pattern-

recognition problems. (Note that position estimation of a scintillation event is often

done by assigning the event to a grid point, and therefore can be thought of as a clas-

sification problem.) Although still subject to the curse of dimensionality, the k-NN

technique has a much better track record than kernel density estimators when the

number of dimensions is greater than four or five. The k-NN technique was intro-

duced by Loftsgaarden and Quesenberry [1965] and is discussed in depth by Silverman

[1986].
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The technique is simple; the probability density is estimated using distance from

the sample points:

p̂(x) =
1

dist(x,xk)
, (2.34)

where dist is the Euclidean distance and xk is the k-th nearest neighbor to x. The

parameter k controls smoothing; its role is analogous to that of h in kernel density

estimation. Silverman [1986] gives the rule of thumb

k = n4/(d+4), (2.35)

where n is the number of calibration samples and d is the number of dimensions. For

the modular gamma camera we have n ≈ 5000 and d = 9, so this rule suggests we

should use k = 14. The easiest (though not quickest) way to implement k-NN is to

compute the distance from x to all calibration samples xi, sort, and then pick the kth

value. It is important to note that p̂(x) is not a true density estimate, in particular

it is not properly normalized, for
∫
∞ p̂(x) dx = ∞.

2.3.4.1 Computational issues with k-NN estimation There are several ways to speed

up k-NN density estimation over the obvious naive implementation. The simplest

speedup is to avoid sorting the distances. A fast sort algorithm such as Quicksort

has on average O(N logN) time complexity. But if one only wants to select the kth

largest value while ignoring the other values, the time can be reduced to O(N) on

average by using a variation on Quicksort. For the k-select algorithm pseudocode and

time-complexity analysis see Cormen et al. [1990]. My experience with this trick is

that it speeds up k-NN position estimation by about 50% over sorting.

Another approach avoids computing all the distances by using a branch-and-bound

algorithm, as described by Fukunaga and Narendra [1975]. The idea is to build a

tree structure out of the calibration samples, where each node of the tree stores a

centroid and radius of all the points below it. Reports in the literature indicate a

speed increase over Quicksort of between 50% and 90% using this algorithm. I didn’t
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bother to implement it because, as will be discussed in section 2.5, we would have

needed to reduce the computation time by at least 99.99% for k-NN to be of practical

use in image reconstruction; furthermore the much faster independent histograms

model introduced in section 2.4.1 gives useful results.

A third option, really a simplification of the branch-and-bound approach, is to

set the density estimate to zero when x is far away from the cloud of calibration

points. For example, one can compute the distance from x to the centroid of the

calibration cloud, and set p(x) = 0 if the distance is greater than w times the radius

of the cloud. I implemented this for non-parametric maximum-likelihood position

estimation of scintillation events using MDRF data and was disappointed with the

speedup. In order to avoid changing the ML position estimate, w had to be set large

enough that the speedup was less than 10%.

2.4 Independence assumptions

We have already noted that each list entry is statistically independent from the other

list entries. It is often reasonable to assume that within a single list entry the different

components are also statistically independent. We have already seen an example

of this in section 2.2.1with the Poisson assumption for detector output. A related

example can be found in the modular gamma cameras, where the nature of gain in the

PMT-amplification process dictates that tube outputs for a photo-peak event should

be independent. (Since not all events are photo-peak, a two-dimensional scattergram

of the PMTs shows correlation. See figure 2.4.)

Even if the components of a list entry are not truly independent, well, we can

always just pretend they are and charge ahead, hoping things will turn out fine. The

independence assumption

p (g|φj(r)) =
∏

t

p (gt|φj(r)) (2.36)
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Figure 2.4. Scattergram and marginal histograms of MDRF data for two
neighboring PMTs. The MDRF source was located at grid point (26,26) near
the center of tube 3. Photopeak events appear uncorrelated, but the tail of non-
photopeak events shows correlation. Histograms of the same data for all tubes are
shown in figure 2.2.
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allows us to model each component of the data separately. Although this assumption

can be, and often is, used with parametric models, it is especially useful for nonpara-

metric approaches, as it allows us to avoid the curse of dimensionality by using a

histogram or other one-dimensional density estimator for each tube.

2.4.1 Likelihood model for modular gamma cameras using independent

histograms

I have had success coupling the independence assumption (2.36) with the square-

root transform (2.20) and then using histograms to model the likelihood of PMT

output. (Here success means images reconstructed using this model look good and

are similar to those produced using other models. No task-based study was done to

verify this subjective impression.) I have used this approach calibrated with MDRF

data for position estimation from a single event and fluence estimation from a list of

events. I have also used it calibrated with PSF data for tomographic reconstruction

directly from list-mode PMT data. With these assumptions the nonparametric PSF

likelihood model for all 16 modular cameras in FastSPECT-II requires only 871 MiB,3

and therefore fits comfortably into the limitations of a 32-bit address space. Using

these assumptions, computing the probability a list event originated in region φj(r)

is quick and easy to implement, as it merely involves looking up each tube value in

the histogram and then multiplying the results.

It would also be possible to use a covariance-diagonalizing transform such as prin-

cipal components analysis (PCA) or independent components analysis (ICA) [Comon,

1994] to preprocess the PSF data. Since the data being reconstructed would also need

the transform applied, the coordinated change must be stored, which would add at

least 210 MiB to the PSF likelihood model. I did not pursue this idea in part because

the independence assumption was working well without any decorrelation, and in

3The lab purchased its first server with more than 3 GiB of RAM shortly before I finished. The
majority of our compute nodes had only 512 MiB, with some having up to 2 GiB.
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part because storing the additional information would force the reconstruction pro-

gram to use more than the 1 GiB of RAM found in many of our compute nodes,

resulting in a significant increase in how long it would take to process a data list.

Because photopeak events already produce uncorrelated PMT data (see figure 2.4), a

decorrelating step would focus on the tail, and therefore might actually degrade the

likelihood estimate for photopeak events.)

2.5 Double list-mode reconstruction

A drawback of parametric likelihood models is that they are different for each type of

imaging system. Thus a modeling a PET system requires a different parametric family

than one would use to model a SPECT system. Furthermore, choosing the right family

often requires considerable understanding of the system’s measurement physics; poor

approximations and invalid assumptions made during modeling will introduce errors

and artifacts in the reconstructed images. The big appeal of nonparametric models is

that they allow us to avoid explicitly modeling the system. Ideally we would be able

to use only the calibration data to formulate the likelihood model, without imposing

any other prior knowledge on the model. Such an approach can be useful even with

systems for which we already have parametric models, as we may be able to use

the nonparametric model to validate the assumptions and approximations behind the

parametric model.

Using either a kernel density estimator or a k-nearest-neighbor estimator, it is

possible to formulate the likelihood model directly from list-mode calibration data

without imposing any assumptions about the system. Because this sort of nonpara-

metric likelihood model involves comparing each data list entry with each calibration

list entry, we refer to this approach as double list-mode reconstruction.

I have implemented a version of double-list-mode reconstruction by using the k-

NN estimator calibrated with MDRF data to produce maximum-likelihood position
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estimates. After position estimation, the reconstructed projection image is produced

by histograming the position estimates.

A likelihood plot for the position of one list entry is shown in figure 2.5. Notice that

although the likelihood function is nicely peaked, the tails are quite noisy, and even

the peak is bumpy. This means non-brute-force search algorithms such as steepest-

ascent or conjugate-gradient will have trouble finding the max unless started quite

close to the correct location. In practice, something similar to exhaustive search is

required. (Using an external model derived from prior knowledge about the camera

to choose the search starting point would not be in the spirit of non-parametric

estimation. Once one builds in assumptions one is no longer doing pure double list-

mode reconstruction.)

Several other points are worth making about my implementation. First, double-

list-mode works—it is possible to do image reconstruction without any model of the

imaging system other than extensive list-mode calibration data.

Second, double list-mode is very slow. The k-NN approach requires 7.5 seconds

per data list entry to do ML position estimation. (Average of 1000 events. Timing

was done on host gamma-33, which has a 2.1 GHz AMD Athlon MP2600+, the fastest

CPU type currently in our compute nodes. Most of our CPUs are slower.) Given

that a typical data set for animal imaging has on the order of one-hundred thousand

events per camera, using double list-mode would require 208 hours of CPU time just

to reconstruct one projection image. Of course FastSPECT-II has sixteen cameras,

and each imaging session usually produces several data sets. Even with the parallel-

processing resources available, this is too slow for any practical use. To make k-NN

practical we would need speedups of several orders of magnitude, far more than any

of the available algorithm tricks would allow.

Third, double list-mode, or any other non-parametric technique, will have less

statistical power than an accurate parametric model. The noisy tails in figure 2.5 are

a symptom of this.
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Figure 2.5. Nonparametric log-likelihood plot for one event. The log-
likelihood was computed using the double-list-mode (k-NN) technique. On the upper
left is a close-up of the maximum-likelihood location, and on the upper right is a
contour plot. The maximum-likelihood position is (42, 46) with a log-likelihood of
-45.78.
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Fourth, double list-mode reconstruction only takes account of properties present

in the data. The calibration techniques described in sections 2.1.2 and 2.1.3 do

not measure the effects of attenuation and scatter, both of which may be easier to

incorporate into a parametric model.

Given these practical drawbacks, at this point double list-mode reconstruction

seems to be a solution in search of a problem. The ideal imaging system for double list-

mode would be difficult or impossible to model parametrically, would have extensive

list-mode calibration data available, and yet would produce only a limited number of

list entries when imaging an object.
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Chapter 3

Image-quality comparison of two

reconstruction algorithms

This chapter compares two different algorithms for producing projection images from

list-mode modular-gamma-camera data. Both algorithms start with a list of PMT

readings and use a likelihood model to output a reconstructed planar projection.

The image quality of each algorithm, more precisely the quality of the images it

reconstructs, is measured using an anthropomorphic channelized-Hotelling observer

(CHO) as a proxy for human observers. The Rayleigh task, a traditional measure of

image system resolution, is used for quality comparison of the two algorithms.

Although the raw PMT data from the modular camera have 9 dimensions, we

usually produce images from a reduced-dimensionality list consisting of 2-dimensional

position estimates for reasons of computational efficiency. A similar dimensionality

reduction is found in almost all nuclear-medicine detectors. An important question

is: do we lose any information by working with the reduced dimension data, and if so

does the loss have practical implications? The simulations in this chapter partially

answer this question by doing observer studies using both types of list.

The first algorithm of interest is a conventional two-step process. It begins by

processing all list entries, using maximum likelihood (ML) to estimate the position

of each scintillation event. The likelihood model used for this study is the inde-

pendence model introduced in section 2.4.1, calibrated using mean detector response

function (MDRF) data. After position estimation, the locations are binned into a

two-dimensional histogram, which is displayed to the observer as the reconstructed

projection image. (Because each event is assigned to its ML position estimate, this

method is often called ML reconstruction. However, as discussed in section 1.7.4,
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this approach does not produce an ML estimate of the projection-image f , except

in the limiting case of no detector blur.) In the position estimation step each indi-

vidual event is assigned to exactly one region on the camera face. Variations on this

approach are the standard methods of producing planar-projection images from the

modular gamma cameras. We refer to this technique as histogram reconstruction.

The other algorithm is the list-mode expectation-maximization (EM) algorithm

described in section 1.7.2. EM uses the same likelihood model as the position-

estimation approach, but is able to partially attribute each event to multiple regions

on the camera face. We shall refer to the EM method of reconstruction as fluence

estimation.

Marcotte [1993] was the first to use EM to produce projection images from modular

camera data. Her primary focus was post-processing histogram reconstructions with

binned-mode EM, thereby removing blur introduced by incorrectly estimating the

positions of events. She also considered using binned-mode EM to process histograms

of raw PMT output, but did not pursue the idea because of computational difficulties.

3.1 Subjective image-quality comparison

The first thing to do when assessing the quality of a reconstruction algorithm is to

eyeball some images it has produced, preferably images of known objects. Such a

subjective image-quality comparison is hardly rigorous, yet may suggest differences

we can verify using task-based metrics. Figure 3.1 shows a planar-projection mouse

bone-scan reconstructed using both algorithms.1 The EM image appears to have

slightly higher resolution, most noticeable in the skull region and in the shoulder.

This is suggestive, but hardly conclusive. Further examples are needed. Figure 3.2

shows reconstructions of a shadow mask image, again using both algorithms.2 The

EM algorithm is iterative, so results after various numbers of iterations are shown.

1Mouse data provided by Zhonglin Liu.
2Shadow-mask data provided by Jean Chen.
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The mask consists of a lead plate, into which holes have been drilled to form the

image. The mask is placed flush against the camera face, and is illuminated by a

point source located several meters from the camera. Notice that at 100 iterations

it appears as though some individual holes in the mask are visible. Running further

iterations doesn’t change the image; the algorithm has essentially converged by this

point.

3.1.1 Pseudo point-spread function

Because the point spread function (PSF) of a linear imaging system contains all in-

formation about the system resolution, it has become traditional to include images of

a point source in any discussion about resolution. Even though the modular cameras

have nonlinear response, and both reconstruction algorithms under consideration are

nonlinear, looking at a point source may still be useful. Figure 3.3 shows images of

a point source reconstructed using both algorithms. The PMT data was produced

by aiming a pencil-collimated beam at one spot on the camera face. (The collima-

tor was the same one used for MDRF calibration. To produce these point-source

reconstructions a special high-resolution 0.5 mm × 0.5 mm MDRF was used to cali-

brate the likelihood model.) More strongly than the mouse and shadow-mask images

shown above, the point images suggest that the EM fluence-estimation approach is

producing higher-resolution images than the histogram of position estimates.

It is important to note that the images in figure 3.3 are not point spread functions

(PSFs) in the usual linear-systems theory sense! The PSF is an inherently linear

concept and may not be relevant for nonlinear imaging systems. It is not correct to

think of the modular camera as convolving or blurring an object with these “PSFs”.

The mapping from scintillation event to PMT value, the ML position estimation,

and the EM algorithm are all highly nonlinear, therefore it is likely that moving the

source to a different location on the camera face, or changing the number of list
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Figure 3.1. Subjective comparison of histogram reconstruction and EM
fluence estimation. The image on the left is the histogram of maximum-likelihood
position estimates from a mouse bone scan. On the right is a fluence estimate from
the same data set, produced using 2 iterations of the 2-dimensional list-mode EM
algorithm.

histogram 2 EM iterations 5 EM iterations

20 EM iterations 50 EM iterations 100 EM iterations

Figure 3.2. Shadow-mask image reconstructed from raw PMT data using
the histogram and fluence-estimation approaches.
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15 iterations EM 20 iterations EM

Figure 3.3. Pseudo point-spread function (PSF), created by reconstruct-
ing a point source using the histogram and fluence-estimation approaches.
This is not a true PSF, because the imaging system and reconstruction algorithms are
nonlinear. Each sub-image has been separately normalized, so gray-scale levels are
not comparable. This figure is at higher magnification than the preceding bone-scan
and shadow-mask examples.
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entries, would result in a different PSF. As a result it is questionable how indicative

of system performance these images are. Wilson [1994] showed that when analyzing

the EM algorithm the linear approach is appropriate only for small perturbations.

The apparent resolution of the EM approach shown in figure 3.3 is suspicious for

two other reasons. First, the background is set to zero. Due to EM’s multiplicative

update equation (1.32), zero is a fixed-point for each coefficient α̂j, and therefore is

the easiest value for EM to estimate.

Second, as discussed in section 1.7.5, the EM algorithm is notorious for producing

“night-sky” reconstructions, in which the reconstruction consists of a small number of

point objects. How can we be sure that EM converged to a point-like image because

it has higher resolution, and not because that is what it always does? For these

reasons, reconstruction of a point source is not a fair way to compare EM with other

approaches.

3.2 Rayleigh task

As discussed in section 1.9, the best way to compare the resolution of nonlinear re-

construction algorithms is to compare observer performance on a resolution-sensitive

task. The task chosen here is a variation of the classical Rayleigh task, in which the

observer must decide whether the image contains one or two objects.

3.2.1 Literature review

The task is named after Lord Rayleigh [1879, 1880], who suggested it as the way to

determine the resolution of spectroscopes:

“As the power of a telescope is measured by the closeness of the double

stars which it can resolve, so the power of a spectroscope ought to be

measured by the closeness of the closest double lines in the spectrum which

it is competent to resolve. In this sense it is possible for one instrument
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to be more powerful than a second in one part of the spectrum, while in

another part of the spectrum the second instrument is more powerful than

the first.” [Rayleigh, 1879, p. 269]

Rayleigh was not the first person to think along these lines. He cites an earlier

study of double stars by Dawes [1867], and notes that Foucault also studied the

question of resolving-power. In fact the idea is much older. Since ancient times a test

of eyesight has been to distinguish between Mizar (ζ Urasae Majoris, magnitude 2.3)

and Alcor (80 Ursae Majoris, magnitude 4.0), a pair of stars in the handle of the Big

Dipper3 [Chartrand and Tirion, 1991]. (Because of the large difference in intensity

magnitude, distinguishing between the two stars is a test of both resolving power and

sensitivity to brightness.)

Harris [1964] studied the Rayleigh task from the viewpoint of statistical-decision

theory, calculating how the ideal observer processes detector output. He formulated

the problem as an SKE task, and showed that given a sufficient number of photons the

ideal observer can distinguish between a single point source and two arbitrarily-close

point sources. The ideal observers accuracy increases with the number of photons.

The Rayleigh task differs from linear measures of resolution such as the PSF full-width

half-maximum (FWHM) by also considering noise level. Rayleigh task performance

explicitly depends on the number of detected photons.

The Rayleigh task was introduced into medical imaging as a task for image-quality

assessment by Wagner et al. [1981], who suggested it as a way of comparing different

coded-aperture designs. Together with their collaborators they published a series of

papers on the topic: Hanson and Myers [1991a,b] were the first to use the Rayleigh

task to compare reconstruction algorithms and regularization techniques. Later Myers

et al. [1993] showed that model-observer performance on the Rayleigh task can be used

3Mizar and Alcor are not a binary-star system; they merely appear close together from our vantage
point. In 1650 the Jesuit astronomer Giovanni Battista Riccioli discovered Mizar is a multiple-star
system, the first found by telescope. Mizar is now considered to be a quadruple star [Encyclopædia
Britannica Online].
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to predict human performance on images reconstructed by different reconstruction

algorithms. Myers et al. [1990] used the Rayleigh task to compare different aperture

designs, and showed that precise specification of the task—in particular the choice of

background—has a significant impact on performance. Wagner et al. [1996] used the

Rayleigh task to illustrate why Bayesian reconstruction approaches should consider

knowledge of the task as a form of prior knowledge.

Lehner et al. [2004] were the first, to my knowledge, to use the Rayleigh task

to compare two list-mode reconstruction algorithms. They reconstructed the same

two-point-source data using two algorithms and noted that only one of the algorithms

produced a two-point image. They used only a single data set from one object; no

attempt was made to produce ROC curves or vary the background.

3.2.2 Precise description of the Rayleigh tasks

As noted by Rayleigh, the precise task definition affects measured performance rat-

ings:

“A double line is therefore probably more easily resolvable than a

double point; but the difference is not great.” [Rayleigh, 1879, p. 264]

In the version of the Rayleigh task used here, the observer must distinguish be-

tween two Gaussian blobs, also called a dumbbell, and a single Gaussian convolved

with a 1-dimensional rect function, also called a Gaussian bar. All three Gaussians

have standard deviation σ = 2. All units of width and length are in object pixels,

divide by two to get millimeters. The pair of Gaussians are separated by specified

length l. The length and amplitude of the Gaussian bar are chosen to minimize the

mean-square difference between the bar and the dumbbell, the normalization sug-

gested by Hanson and Myers [1991b]. An example of the two objects is shown in

figure 3.4.
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Gaussian dumbbell Gaussian bar

histogram

EM

Figure 3.4. Sample signals used in the Rayleigh task. The left column are a
pair of Gaussians (dumbbell) and the right column are Gaussian bars. The top row
was reconstructed using the histogram algorithm, the bottom using 10 iterations of
the EM algorithm. The observer must distinguish between the dumbbell and bar.
These images use a dumbbell length of 17, considerably longer than used in the CHO
study. The length was increased for this illustration because the intensity dip at the
center of the dumbbell is harder to see on printouts than on the screen.
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To determine the mean number of photons emitted at each grid point of the

simulated fluence pattern, the analytic expressions for the dumbbell and bar were

sampled on a high-resolution (0.5 mm × 0.5 mm) grid and added to a background

image. Poisson noise was added about this mean. The required number of list entries

were randomly selected, with replacement, from a special high-resolution, high-count

(c. 19,000 events at each grid point) MDRF dataset recorded for this study.4

The simulated data were then reconstructed using both algorithms to produce

projection images. The two algorithms use the same likelihood model, calibrated by

an ordinary low-resolution (1.5 mm × 1.5 mm) low-count (c. 5000 events at each grid

point) MDRF. Therefore pixelized objects are sampled on a grid that is three-times

finer in each dimension (nine times finer in area) than the reconstruction grid of the

images displayed to the observer.

Performance was measured by an anthropomorphic channelized Hotelling ob-

server, using the 80 Gabor channels introduced in section 1.11.6.2. No internal noise

was used in the CHO. (Internal noise is needed to quantitatively predict human perfor-

mance, but has not been observed to change the rank order of the algorithms.) Area

under the ROC curve was estimated using the percentage of correct identifications

in a 2-AFC experiment. Error bars were computed using the techniques described in

section 3.3.

Pseudo-random numbers needed for the randomized backgrounds, Poisson noise,

and resampling of the high-resolution MDRF were provided by subroutines from

version 1.5 of the GNU Scientific Library (GSL5) [Galassi et al., 2003]. To ensure

processes running on different CPUs had different sequences of random numbers,

the MT199376 random-number generator was seeded using the Linux /dev/urandom

4I am grateful to Jean Chen for help measuring these data.
5I highly recommend GSL’s for those doing scientific programming in C.
6The algorithm is named MT19937 because it uses the “Mersenne Twister” technique and has

a period of 219937 − 1 numbers. Ironically MT19937 was developed at Hiroshima University, while
GSL was written at Los Alamos National Lab.
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entropy pool.

Objects were sampled from ensembles at a variety of lengths for three background

types:

Zero background: The simulated object consisted of one of the two signal types

(Gaussian dumbbell or Gaussian bar) against a zero background. There are

two sources of randomness in the data. The first is the Poisson noise in the

number of photons emitted at each grid point of the object. The second is

caused by sampling from the high-resolution MDRF to simulate noise in the

scintillation crystal and PMT. 1000 pairs of images were created for dumbbell

lengths of 6, 9, and 12 pixels, with a mean of 2000 detected photons from the

dumbbell. These lengths were chosen to span the interval in which performing

the task changes from being difficult to easy for the CHO. 1000 pairs of images

at each length were generated using the zero background.

Flat background: The simulated object consisted of one of the two signal types

added to a flat background. The background had a mean of five background

counts per object pixel (corresponding to a mean of 45 background counts per

reconstructed image pixel). These scenes have the same two sources of noise

as the zero background case. The effect of the flat background is to raise the

variance of the Poisson noise and to make the intensity dip at the center of the

dumbbell less obvious. As in the zero background case, 1000 pairs of images

were created for dumbbell lengths of 6, 9, and 12 pixels, with a mean of 2000

photons detected photons from the dumbbell. 1000 pairs of images at each

length were generated using the flat background.

Lumpy backgrounds: The object consisted of one of the two signals added to a

lumpy background [Rolland and Barrett, 1992]. The background consisted of a

Poisson number (mean of 100) of symmetric Gaussian lumps (standard deviation
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(width) of w ∈ {2, 3, 4} pixels, and maximum amplitude of 40 counts—note that

for w = 2 the background lump is the same width as the foreground signal)

uniformly distributed in a region around the signal. As in the zero and flat

background cases, the lumpy background scenes have randomness due to the

number of events at each grid point in the simulated object and due to sampling.

However the random number and random locations of the lumps introduce a

third source of randomness: the background. 2000 pairs of images at each

length were generated using each of the three lumpy background widths. Each

image had its own randomly-generated lumpy background; backgrounds were

independent within each pair and from pair to pair. To produce smaller error

bars, more pairs were generated than for the other two backgrounds.

3.3 CHO error bars

To conclude that one algorithm is better than another it is not sufficient to compute

their respective SNRs or AUCs and see which is bigger. We must also know their

respective error bars in order to determine if the difference is statistically significant.

For our version of the Rayleigh task we don’t know analytic expressions for the CHO

or its corresponding SNR/AUC. Therefore we must estimate the CHO template

from training data and then estimate the AUC from testing data, which means the

measured SNR or AUC is a random variable. This section explains how to compute

error bars on the AUC.

There are two ways in which we can proceed: either assume a parametric distri-

bution for the SNR, or we use a nonparametric approach. I used the nonparametric

approach described below because I didn’t learn that the distribution of the estimated

Hotelling SNR was known until after completing the analysis. The two techniques

will usually give similar answers, so there is no reason to prefer the more compute-

intensive nonparametric approach.
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The parametric approach is briefly mentioned for completeness. Recall from chap-

ter 1 that the CHO has

SNR2 = ∆xtK−1∆x. (1.83)

Because the channel outputs are the linear combination of many pixels, by the Central

Limit Theorem it is reasonable to assume that ∆x is Gaussian distributed. It is also

reasonable to assume that the covariance K is Wishart distributed. Therefore SNR2

is a random variable with Hotelling’s T2 distribution, which makes it easy to compute

a classical confidence interval [Johnson and Wichern, 1982].

Note that the T2 distribution may not be appropriate for the naive list-mode

Hotelling observer of section 1.11.5, as the raw PMT outputs are not Gaussian dis-

tributed, and the Central Limit Theorem does not apply.

3.3.1 Nonparametric error bars: bootstrapping and shuffling

For the purposes of an example, let us assume we have a thousand pairs of images

available, such that exactly one image in each pair corresponds to each of the two

possibilities in the Rayleigh task, i.e. that one image in each pair is a Gaussian

dumbbell while the other is a Gaussian bar. Further, let us assume that all the pairs

are statistically independent. If we don’t care about error bars, computing the CHO

is easy—simply train it on all thousand images. (By train we mean use the available

images to estimate the covariance and mean of the channel outputs, K and ∆x in

(1.79).)

We could also use all 1000 images to estimate the AUC, but this would result in

an overestimate, as the testing data wouldn’t be independent of the training data.

Better would be to partition the set of images into two halves, using the first as

trainers to estimate the CHO and SNR, and using the second half to as testers to

estimate the AUC.

The preferred way to compute error bars is to create many (say several hundred)
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other sets of 1000 images and use those to study the variance in the CHO’s perfor-

mance. Unfortunately use of this gold standard is not computationally feasible for

our problem.

Another alternative is to partition the full set of a thousand images into five

smaller sets of 200 images. From each of these subsets we could pick 100 images

as trainers and use the other 100 as testers. This would give us five estimates of

the AUC, from which we could compute a mean and variance. Because the pairs

are independent, there is nothing special about the way we partitioned the original

images. A different partitioning, say subsets of 100 images would have worked just

as well.

This suggests using a class of statistical procedures known as resampling. By

creating many subsets from our original set, we can estimate the variability which

would have occurred using the preferred approach of creating many sets of 1000

images. The most famous resampling approach is called the bootstrap. (Another,

not used in this dissertation, is the jacknife.) Readers desiring a gentle introduction

to resampling in general, and bootstrapping in particular, are referred to Diaconis

and Efron [1983] and Efron and Tibshirani [1991]. The basic idea is simple: create

a resample by picking random elements from the original sample. Bootstrapping is

resampling with replacement, which means that some elements will appear in the

resample more than once, and others will not appear at all.

The best way to to compute CHO error bars by resampling from a limited amount

of training and testing data has been studied by Gallas [2003]. He considered two

possible ways of resampling the data and compared them with the gold standard.

The first, which he calls the shuffle technique, places the pairs in a random order,

much the way one shuffles a deck of cards. The first half of the shuffled set is used

to train the CHO, and the second half to estimate the AUC. This is repeated many

times. The shuffle mean gives an unbiased estimate of the AUC, but the shuffle’s

variance is biased low as an estimate of the error bar.
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The second technique studied by Gallas is the usual bootstrap. Unlike the shuffle

technique, where each image occurs exactly once, sometimes in the training set and

other times in the testing set, with the bootstrap some images will not be present

in the resample, and others will be represented more than once. Thus the bootstrap

may include some images in both the training set and the testing set, which yields

more variability in AUC than the shuffle. As with the shuffle, the first half of the

resample is used to train the CHO, the second half to estimate AUC, and the whole

procedure is repeated many times. The bootstrap gives an unbiased estimate of the

variance of the AUC, but a biased-high estimate of the AUC itself.

Based on Gallas’s results, the channelized Hotelling observer performance results

presented in section 3.4.2 use the shuffle mean to estimate the AUC and the bootstrap

variance to estimate the AUC’s standard error.

3.4 Hotelling observer results for the Rayleigh task

3.4.1 Naive list-mode-Hoteling observer

After generating the simulated data sets, all lists were processed to produce maximum-

likelihood positions estimates. The naive list-mode Hotelling observer described in

section 1.11.5 was computed for both types of list. To do this the short lists corre-

sponding to each scene were concatenated together into one long list which was then

used to train the Hotelling observer. SNR was computed using (1.85), with error bars

provided by bootstrapping.

The results are shown in figure 3.5 for the zero background, figure 3.6 for the flat

background, and figure 3.7 for the lumpy background. The SNR numbers are so low

because they correspond to making a decision using only one list entry. (By (1.88) the

SNR scales as
√
Nlist.) The Hotelling SNR (1.83) was used instead of AUC because

the values are so low.

For all three background types the position estimates yielded a lower SNR than
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Figure 3.5. SNR of the naive list-mode Hotelling observer performing the
Rayleigh task against a zero background. Plotted are the observer acting on
the raw 9-dimensional PMT data and on the 2-dimensional ML position estimates.
These are the SNRs for a single event, multiply by

√
N to get the SNR for N events.

The error bars have been horizontally displaced; the dumbbell lengths are exactly 6,
9, and 12 for both cases.
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Figure 3.6. SNR of the naive list-mode Hotelling observer performing the
Rayleigh against a flat background. Plotted are the observer acting on the raw
9-dimensional PMT data and on the 2-dimensional ML position estimates. These are
the SNRs for a single event, multiply by

√
N to get the SNR for N events. The error

bars have been horizontally displaced; the dumbbell lengths are exactly 6, 9, and 12
for both cases.
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Figure 3.7. SNR of the naive list-mode Hotelling observer performing the
Rayleigh against a lumpy background, w = 2. Plotted are the observer acting
on the raw 9-dimensional PMT data and on the 2-dimensional ML position estimates.
These are the SNRs for a single event, multiply by

√
N to get the SNR for N events.

The error bars have been horizontally displaced; the dumbbell lengths are exactly 6,
8, 10, and 12 for both cases. Note that the SNR is decreasing with length for unknown
reasons.
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the raw PMT values. Note that the naive list-mode Hotelling observer uses a linear

decision strategy which weights each entry independently of the others. The ideal

observer and the image reconstruction algorithms used to display the data to humans

are nonlinear. These numbers give a lower bound on performance of the ideal list-

mode observer.

3.4.2 Channelized-Hotelling observer

The data were also reconstructed into images using both algorithms. Thus each

dumbbell or bar image was reconstructed twice. The images were then used to train

the CHO and estimate its AUC.

For all background types the SNR of the EM algorithm reached a plateau after

only a few iterations and then remained relatively constant for many iterations before

beginning to decrease. (Abbey [1998] observed the same phenomenon while using the

binned-mode EM algorithm to produce tomographic reconstructions.) In all cases

the plateau had been reached by ten iterations.

Figure 3.8 shows the area under the channelized Hotelling observer’s ROC curve

for each algorithm. Here the CHO is performing the Rayleigh task against a zero

background. At lengths 6 and 9 the fluence-estimation approach clearly produces

higher-resolution reconstructions. At length 12 no difference in performance is seen

because the task has become so easy for the CHO to perform that both algorithms

get a nearly perfect score.

Figure 3.9 shows results for the flat background. As in the zero background case,

the fluence estimation approach produces higher-resolution images, though the effects

are much less pronounced. Note the considerable overlap in error bars at length 6.

At length 9 there is also a slight overlap of the error bar.

Finally, figures 3.10, 3.11, and 3.12 compares both algorithm using lumpy back-

grounds. For w = 2, where the lumps are the same width as the signal, statistically
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significant difference between the two algorithms exists, as shown by the considerable

overlap of error bars at all lengths. Note that at length 8 the EM algorithm has

slightly lower AUC than the histogram algorithm. For w = 3 and w = 4 the back-

ground lump width is larger than the signal width, and a EM has better resolution

at length 10.

3.5 Rayleigh task conclusions

The simulations in this chapter indicate that some information is lost during the

dimensionality reduction from the 9-dimensional PMT vector to the 2-dimensional

position estimate. Obvious candidates for the lost information are the amount of

energy deposited in the crystal during the scintillation event and the depth of inter-

action. However the MDRF measurements used to collect data for the simulation are

designed to minimize the impact of those two parameters.

The amount of energy deposited in the crystal depends to a large extent on the

energy of the incoming gamma ray. In human imaging the photon may undergo

Compton scatter within the subject, reducing the energy of the incoming photon.

The MDRF source is not embedded in tissue, so Compton scatter is greatly reduced.

Estimating depth of interaction is most important in situations where one has an

oblique ray interacting with a thick crystal, a common situation in PET imaging.

The modular cameras have relatively thin crystals, so depth of interaction is not an

important effect. Furthermore, the MDRF calibration beam is always perpendicular

to the camera face.

Other candidates for the lost information are sub-pixel resolution and uncertainty

about the true event location. The ML position-estimation technique used here as-

signs each event to a single grid point, throwing away any sub-grid information present

in the raw data. EM, which is able to assign each event to more than one grid location,

can better handle sub-pixel information and uncertainty about the true location.
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Figure 3.8. Area under the ROC curve for the Rayleigh-task CHO with
zero background. Shown are results for the CHO acting on images reconstructed
using both algorithms for a variety of lengths. The error bars have been horizontally
displaced; the dumbbell lengths are exactly 6, 9, and 12 for both algorithms. The
EM algorithm clearly produces higher-resolution reconstructions at lengths 6 and 9.
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Figure 3.9. Area under the ROC curve for the Rayleigh-task CHO with
a flat background. Shown are results for the CHO acting on images reconstructed
using both algorithms for a variety of lengths. The error bars have been horizontally
displaced; the dumbbell lengths are exactly 6, 9, and 12 for both algorithms. At
length 9 the EM produces higher-resolution reconstructions.
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Figure 3.10. Area under the ROC curve for the Rayleigh-task CHO with
a lumpy background, w = 2. Background lump width is the same as the signal.
Shown are results for the CHO acting on images reconstructed using both algorithms
for a variety of lengths. The error bars have been horizontally displaced; the dumbbell
lengths are exactly 4, 6, 8, 10, 12, and 14 for both algorithms. Note that the rank-
order of the algorithms changes for length 8.
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Figure 3.11. Area under the ROC curve for the Rayleigh-task CHO with
a lumpy background, w = 3. Background lump width is the wider than the signal.
Shown are Shown are results for the CHO acting on images reconstructed using both
algorithms for a variety of lengths. The error bars have been horizontally displaced;
the dumbbell lengths are exactly 4, 6, 8, 10, 12, and 14 for both algorithms.
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Figure 3.12. Area under the ROC curve for the Rayleigh-task CHO with
a lumpy background, w = 4. Background lump width is the wider than the signal.
Shown are Shown are results for the CHO acting on images reconstructed using both
algorithms for a variety of lengths. The error bars have been horizontally displaced;
the dumbbell lengths are exactly 4, 6, 8, 10, 12, and 14 for both algorithms.
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The channelized Hotelling observer results show the EM algorithm yields higher

resolution reconstructions than the histogram approach. The effect is especially ap-

parent in the optimal (for EM) case of a zero background, and still exists for a flat

background. Unfortunately the effect is greatly reduced against the lumpy back-

ground, which was designed to mimic the sorts of textures found in clinical images.

Because of the increased processing costs of the EM algorithm must be weighed

against the slight improvement in resolution, it is unlikely to be of much value in

generating projection images for regular use. In particular, the 3-dimensional EM al-

gorithm can already compensate for the blur introduced during the histogram process

when generating tomographic images. Therefore I expect the fluence estimation not

to be useful when generating projection images prior to binned-mode tomographic

reconstruction. (Verifying that is a possible avenue of future work.) The EM fluence

estimates are most useful for the case when one wants to publish or present projection

images, in which case a “prettier” image may have expository value.
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Chapter 4

Estimability analysis for list-mode imaging

systems

Note to the reader: This chapter was originally written as a stand-alone article

intended for separate publication, and later added to the dissertation. As a result

there are some duplications and differences in notation from the other chapters, and

the text isn’t integrated into the rest of the dissertation. A related discussion of

null-space/measurement-space decomposition for a list-mode system and discretized

objects is found in section 1.8.

4.1 Introduction

Most digital imaging detectors, ranging from cheap mass-produced cell phone cameras

to expensive scientific instrumentation, operate in binned mode. A binned detector

integrates for a preset amount of time, and then outputs a histogram. Bins typically

correspond to regions on the camera face, for example detector pixels, but often also

partition other dimensions of data space, such as spectrum or color. The values

stored in each bin are proportional to the number of photons reaching that bin of the

detector; in some cases bin values are literally a photon count.

Binned-mode detectors are popular because they work well in most situations, but

they have serious drawbacks in regimes with very low count rates. The use of bins

places an upper bound on the spatial, spectral, and temporal resolution of the imag-

ing system. In many detector designs increasing the number of bins simultaneously

increases readout time, and thus decreases temporal resolution. For a fixed number

of incoming photons, in the high-resolution limit of many small bins most bins detect

zero events, only a few bins detect one event, and probably no bins detect more than



131

one event. For this limit, which does occur in practice, having the detector output

a sparse representation makes more sense than binned mode. For situations where

the average count rate in each bin would be less than one, detectors are designed to

output a list containing information about each detected event.

List-mode detectors are used in a variety of scientific disciplines. High-energy

physics has been collecting data this way for decades [Solmitz, 1964], as has nuclear-

medicine imaging [Snyder and Politte, 1983]. Although most closely associated with

gamma-ray imaging, some optical imaging systems can be operated in list mode,

for example the imaging spectrometer on the Hubble Space Telescope [Kim Quijano

et al., 2003]. (Astronomers often refer to list mode as time-tagged mode.)

Each entry in the data list is an attribute vector containing information about a

single detected photon. In the simplest case the vector components are the spatial

coordinates of the event and perhaps a time stamp. For high-energy events, such as

those occurring in nuclear medicine, instead of coordinates the attribute vector may

consist of output from several detector elements activated by the event.

In recent years many issues questions to image reconstruction from list-mode data

have been studied by the medical imaging community. Because of the low signal-to-

noise ratio associated with low count rates, statistical techniques such as maximum-

likelihood (ML) and maximum-a-posteriori (MAP) reconstruction have received the

most attention [Barrett et al., 1997; Parra and Barrett, 1998; Byrne, 2001; Huesman

et al., 2000]. Because such algorithms are iterative, improving the rate of conver-

gence is of considerable interest [Reader et al., 2002; Khurd et al., 2004], as is the

prospect of making only one iteration over the list [Reader et al., 2001]. Accuracy of

reconstruction methods has also been studied [Qi and Huesman, 2004].

In this paper we consider which parameters of the object are estimable from list-

mode data. Intuitively speaking, these are the parameters which can be accurately

estimated in the limit of no noise, which in a list-mode system manifests itself as an

infinite number of list entries. A rigorous definition of estimability is given in sec-
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tion 4.2 together with a review of estimability theory for binned detectors. Section 4.3

extends the theory to list-mode detectors and suggests an image reconstruction algo-

rithm based on the theory. Section 4.4 considers related questions in signal detection

using a list-mode detector. Finally section 4.5 illustrates the theory using as an ex-

ample time-of-flight positron-emission tomography (PET), a type of imaging system

commonly used in nuclear medicine.

4.2 Brief review of linear theory and estimability for binned
detectors

This section reviews the theory of estimable parameters for binned-mode linear imag-

ing systems. Due to space constraints the discussion is brief; for an in-depth discus-

sion, including review of the mathematical background and physics, see Barrett and

Myers [2004]. We start with the familiar matrix model of imaging systems, in which

the object and data are both discretized vectors. Then we look at the case where the

system produces a discretized data vector from a continuum object.

4.2.1 Estimability for discretized objects and binned detectors

In the matrix model of imaging, the object being imaged is represented as a collection

of V voxels, and thus is a V -dimensional vector f . In nuclear-medicine applications

fd represents the amount of radiotracer activity within voxel d. The data consist of

measurements from B detector bins, and are represented as a B-dimensional vector

g. (In many cases the components of g correspond to pixels on the detector.) In

matrix form the fundamental linear imaging equation is

g = Hf + n, (4.1)
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where H is the B × V system matrix and n is a random variable representing the

noise. By definition, the mean data vector

g = Hf (4.2)

= 〈g〉g|f . (4.3)

The angle brackets indicate conditional expected value. Therefore, by definition,

n = g − g. In the common case of Poisson noise the statistics of the noise n depend

on the object f .

A standard photointerpretation task is to estimate the amount of the object con-

tained within a region of interest (ROI):

θ = χ†f , (4.4)

where χ defines the ROI and † indicates the adjoint operator. The parameter θ is

estimable if there exists an unbiased linear estimator θ̂(g), in other words if θ̂(g) is a

linear function of the data g and if 〈
θ̂(g)

〉
= θ. (4.5)

The estimable parameters are those which we will correctly estimate in the noise-free

limit; however a parameter being estimable is no guarantee we will do a good job

estimating it in the presence of noise.

It is well known that θ is estimable if, and only if, χ can be written as a linear

combination of rows of H [Albert, 1972, thm. 6.1.8]. It can be shown that if

χ = H†w, (4.6)

where w is a weighting vector in data space, then

θ̂ = w†g (4.7)
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is the unbiased linear estimator we seek, with variance

var(θ̂) =
∑
m

w2
mgm. (4.8)

The solution to (4.6) provides the estimation template w. When no solution to

(4.6) exists the parameter θ is not estimable. Even in the noise-free limit, a non-

estimable parameter of the object cannot be accurately estimated from the data using

a linear estimator, because any linear estimator must be biased! More precisely, the

estimator cannot be unbiased for all values of the parameter.

Rewritten in inner-product notation where
(
x
∣∣∣y) indicates inner product, we

have

θ̂ =
(
w
∣∣∣g) (4.9)〈

θ̂
〉

=
(
w
∣∣∣g) (4.10)

=
(
w
∣∣∣Hf

)
(4.11)

=
(
H†w

∣∣∣f) (4.12)

=
(
χ
∣∣∣f) (4.13)

= θ. (4.14)

Not only does the estimability analysis tell us which parameters of the object are

estimable, (4.10) also gives us a practical technique for estimating them from data.

4.2.2 Estimability for continuum objects and binned detectors

Most objects in the real world are not made up of a finite number of voxels. A more

realistic model is to represent the object as a function f(r) defined on a continuum

of points. Typically r ∈ R2 or r ∈ R3, with specified compact support. In nuclear-

medicine imaging f(r) usually represents the quantity of radiotracer at r and has

units of disintegrations/cm3. For a continuum object the fundamental linear imaging
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equation is

g = Hf(r) + n. (4.15)

By definition, the mean data vector

g = 〈g〉g|f(r) (4.16)

= Hf(r). (4.17)

The Riesz representation theorem guarantees that, for a linear imaging system, the

noise-free system operator H can always be written as an integral operator. Each

component gc of g can be written as

gc =

∫
∞
hc(r)f(r) dr, (4.18)

where the kernel hc(r) is the system sensitivity function for detector element c. Thus

the system sensitivity functions play the same role as the rows of H in (4.2).

As in the matrix model, the amount of the object contained in the ROI defined

by χ(r) is determined by an inner product. For continuum objects the inner product

takes the form of an integral,

θ =

∫
∞
f(r)χ(r) dr. (4.19)

It can be shown that θ is estimable if, and only if, χ(r) can be written as the linear

combination of sensitivity functions hc(r), in other words if

χ(r) = H†w, (4.20)

for details see Barrett and Myers [2004]. The adjoint operator H† is defined by

H†w =
B∑

c=1

h∗c(r)wc, (4.21)

where ∗ indicates complex conjugate. Because of (4.20) the sensitivity functions have

been called the “natural pixels” with which to represent the object [Buonocore et al.,
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1981]. As in the matrix model, θ is an estimable parameter if, and only if, the adjoint

equation (4.20) has a solution w. In inner-product notation we have:

θ̂ =
(
w
∣∣∣g) (4.22)〈

θ̂
〉

=
(
w
∣∣∣g) (4.23)

=
(
w
∣∣∣Hf(r)

)
(4.24)

=
(
H†w

∣∣∣f(r)
)

(4.25)

=
(
χ(r)

∣∣∣f(r)
)

(4.26)

= θ. (4.27)

As in the matrix case, through (4.23) the estimability analysis suggests a method of

estimating the parameter from data.

We can derive the matrix model from the continuum model by considering the

special case where the ROI is the characteristic function φj(r) for the jth voxel.

Thus reconstructing the voxelized object f is equivalent to estimating the amount

of the object contained in each voxel. If the voxels are estimable parameters, the

estimability analysis suggests a linear reconstruction operator.

4.3 List-mode estimability

The previous section reviewed the concept of estimability for traditional imaging

systems, in which the detector consists of a finite number of elements. This section

extends the concept to list-mode imaging systems. As discussed in the introduction,

a list-mode system records a T -dimensional attribute vector v for each photon it

detects. The measured data consist of a list of Nlist attribute vectors, which we

write {vi}, where i ∈ {1, · · · , Nlist}. The list entries vi are independent identically-

distributed random variables. We restrict our analysis to systems which collect data

for a preset amount of time, therefore Nlist is also a random variable.
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One can think of a list-mode system as the limit of a binned-mode system when the

size of detector elements decreases towards zero, simultaneously sending the number

of detector elements to infinity. In this limit each detector element will collect at

most one photon. We continue to model the object as a function f(r).

In order to extend the linear-systems theory reviewed in the previous section to

list-mode data, we must first convert the list into a function. We do so using a simple

trick:

u(v) =

Nlist∑
i=1

δ(v − vi), (4.28)

where δ() is the Dirac delta function. Notice that u(v) is a Poisson random process

in attribute space.

In the binned-mode cases g = Hf and g = Hf(r) could both be thought of as the

average data set over many noise realizations. For a list-mode system noise manifests

itself as a finite number of list entries, and the corresponding average is over possible

lists:

u(v) =

〈〈
u(v)

〉
{vi}|Nlist,f(r)

〉
Nlist|f(r)

. (4.29)

Thus u(v) is the mean of the random point process u(v).

In nuclear-medicine, as in many other applications, the physics dictates that the

number of list entries Nlist must obey Poisson statistics conditioned on the object

being imaged:

p
(
Nlist = n|f(r)

)
=
N

n
e−N

n!
, (4.30)

where N is the mean of Nlist. Let s(r) represent the system sensitivity function, in

other words the probability that a gamma ray emitted at point r inside the object is

detected by the system. Then N is related to the object by

N =

∫
∞
f(r)s(r) dr. (4.31)

To fully evaluate the expected values in (4.29) we need to know details about

p
(
v|f(r)

)
, the probability of recording attribute vector v when imaging the object
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f(r). The form of p
(
v|f(r)

)
is specific to the imaging system of interest; in section 4.5

we will discuss the probability law for a PET system. For now, note that

p
(
v|f(r)

)
=

∫
∞
p
(
v|r
)
p
(
r|f(r)

)
dr, (4.32)

where p(v|r) is the probability a photon originating at point r will produce a list

entry v, and p
(
r|f(r)

)
is the probability of a detected photon being emitted from r

by the object f(r). Because

p
(
r|f(r)

)
=

f(r)s(r)∫
∞ f(r′)s(r′) dr′

(4.33)

=
f(r)s(r)

N
, (4.34)

we have

p
(
v|f(r)

)
=

∫
∞
p
(
v|r
)f(r)s(r)

N
dr. (4.35)

Using these identities we can partially evaluate the expected values in (4.29). First

we evaluate the inner expected value:

〈u(v)〉{vi}|Nlist,f(r) =

〈
Nlist∑
i=1

δ (v − vi)

〉
{vi}|Nlist,f(r)

(4.36)

=

∫
dv1p

(
v1|f(r)

)
· · ·
∫
dvNlist

p(vNlist
|f(r)

) Nlist∑
i=1

δ (v − vi)

(4.37)

= Nlist p
(
v|f(r)

)
. (4.38)

Next we evaluate the outer expected value:

〈
Nlist p

(
v|f(r)

)〉
f(r)

=
∞∑

Nlist=1

p
(
v|f(r)

)
Nlist p

(
Nlist|f(r)

)
(4.39)

= Np
(
v|f(r)

)
. (4.40)
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Substituting (4.35) into (4.40) yields

u(v) = Nlistp
(
v|f(r)

)
(4.41)

=

∫
∞
p(v|r)s(r)f(r) dr (4.42)

≡
∫
∞
l(v, r)f(r) dr (4.43)

≡ [Lf ](v). (4.44)

Equations (4.43) and (4.44) define the list-mode system operator L, relating the

object f(r) to the noise-free data u(v). The list-mode operator L plays the same

role for a list-mode system as H in (4.2) and H in (4.17) do for a system with

binned detectors. The list-mode sensitivity function l(v, r) is the analogue of the

binned-mode sensitivity function hc(r) in (4.18).

The amount of f(r) contained in an ROI is still given by (4.19). Now our weight

function is the solution to the integral equation

χ(r) = L†w(v) (4.45)

≡
∫
∞
p(v|r)s(r)w(v) dv. (4.46)

The object’s parameter θ is estimable if, and only if, (4.45) has a solution. Because

w(v) is a function in T dimensions, a list-mode system has considerably more es-

timable parameters than a binned-mode system. (It bears repeating: the estimability

analysis considers the noise-free limit, and thus gives a best-case scenario. In practice,

measurement noise will limit how many parameters of the object we can jointly esti-

mate, because the accuracy of the estimates decreases as the number of parameters

increases.)
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In inner-product notation we have:(
w(v)

∣∣∣u(v)
)

=
(
w(v)

∣∣∣Lf(r)
)

(4.47)

=
(
[L†w](r)

∣∣∣f(r)
)

(4.48)

=
(
χ(r)

∣∣∣f(r)
)

(4.49)

= θ. (4.50)

If we can solve (4.45), then the data list {vi} can be used to estimate the inner

product
∫
∞w(v)u(v) dv using Monte-Carlo integration:

θ =
(
w(v)

∣∣∣u(v)
)

(4.51)

≈
(
w(v)

∣∣∣u(v)
)

(4.52)

=

Nlist∑
i=1

w(vi) (4.53)

≡ θ̂ ({vi}) . (4.54)

Furthermore, θ̂ ({vi}) is an unbiased linear estimator of θ, with variance∫
∞
w2(v)u(v) dv. (4.55)

(Note that θ̂ is not a linear combination of the attribute vectors vi, because for

most imaging systems the weight function w(v) is nonlinear.) Therefore, just as for

binned-mode systems, the estimability analysis not only tells us which parameters

are estimable, but also suggests a practical way to estimate them. Note in particular

that (4.53) requires only one pass through the list to estimate the parameter. The

potentially difficult task of solving (4.45) need only be done once per imaging system;

section 4.5 does so for a PET system, for which the solution turns out to be simple.

4.4 List-mode Hotelling observer

A common photointerpretation task is to decide whether or not an image contains a

signal. Lesions and tumors are typical examples of signals found in medical images.
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Because of the ubiquity of signal detection tasks, the accuracy with which an observer

can perform the task on images produced by a given imaging system is often used as

a figure of merit to measure the quality of the imaging system [Barrett, 1990]. The

Hotelling observer, a linear algorithm that performs a signal-detection task, is widely

used to model observer performance on a signal-detection task. Its associated figure

of merit, the Hotelling trace, also called the Hotelling signal-to-noise ratio (SNR), is

used to assess the quality of an imaging system. This section derives the Hotelling

observer and Hotelling trace for a list-mode detector.

The Hotelling observer makes its decision by computing a linear test statistic, or

discriminant, which is then compared with a threshold [Barrett and Myers, 2004].

(The Hotelling discriminant is the population equivalent of the Fisher linear discrim-

inant.) In the familiar matrix model of a binned-mode imaging system, the Hotelling

test statistic is computed by

tbin = ∆gK−1
g g, (4.56)

where

∆g = 〈g〉p − 〈g〉a (4.57)

is the difference between the mean data when the signal is present and the mean data

when the signal is absent, and the covariance

Kg =
1

2

(
Kg|p + Kg|a

)
. (4.58)

The figure of merit associated with the Hotelling observer is the Hotelling trace:

SNR2
bin = ∆g†K−1

g ∆g = trace
(
K−1

g ∆g∆g†
)
. (4.59)

As in the binned-mode case, the list-mode Hotelling observer first applies the

inverse-covariance operator, which now takes the form of an integral transform, to

the data u(v) =
∑Nlist

i=1 δ(v−vi), and then computes its inner product with the signal

difference. The same tricks used to derive u(v) can be used to show that for a fixed
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object f(r) the autocovariance of u(v) is given by

[Ku(v)] (v′) = u(v)δ(v − v′). (4.60)

The signal difference is given by

∆u(v) = 〈u(v)〉present − 〈u(v)〉absent , (4.61)

where the expected value encompasses both noise and variability within the signal

class. To avoid having to average over object ensembles, since that would break the

delta correlation of the autocovariance, let us assume fixed objects fp(r) and fa(r)

for signal present and absent respectively. Then

[Kdatu(v)] (v′) =
1

2

(
up(v) + ua(v)

)
δ(v − v′) (4.62)

is the average autocovariance of the data.

A possible avenue of future work is determining the average autocovariance in the

presence of object variability. For the binned-mode case it is possible to partition the

covariance matrix into a diagonal component due to noise, which can be determined

analytically, and a nondiagonal component due to object variability, which can be

estimated using noise-free data [Barrett and Myers, 2004, sec. 14.3.2] [Fiete et al.,

1987]. It may be possible to similarly partition the autocovariance operator in the list-

mode case, where the noise-free data from object fk(r) is now given by the probability

law p
(
v|fk(r)

)
. Of course this requires us to know this expression for an ordinary

object. Alternatively, it may be possible to sample list-entries produced by fk(r),

and then reconstruct the probability using density-estimation techniques [Silverman,

1986].

The list-mode Hotelling test statistic is given by

tLM-Hotelling = ∆u(v)†
[
K−1

datu(v
′)
]
(v). (4.63)
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In this notation the adjoint indicates inner product, and the covariance is an integral

operator:

∆u(v)†[K−1
datu](v) =

∫
∞

∆u(v)[K−1
datu](v) dv (4.64)

=

∫
∞

∆u(v)

∫
∞

2δ(v − v′)

up(v
′) + ua(v

′)
u(v′) dv′ dv (4.65)

=

∫
∞

∆u(v)
2u(v)

up(v) + ua(v)
dv (4.66)

=

∫
∞

2∆u(v)

up(v) + ua(v)

Nlist∑
i=1

δ(v − vi) dv (4.67)

=

Nlist∑
i=1

2∆u(vn)

up(vn) + ua(vn)
. (4.68)

The list-mode Hotelling SNR for detecting between two known objects fp(r) and

fa(r) is given is given by

SNR2
LM = ∆u(v)†

[
K−1

dat∆u(v
′)
]
(v) (4.69)

=

∫
2∆u(v)2

up(v) + ua(v)
dv. (4.70)

4.5 Estimability theory illustrated for PET

This section illustrate the ideas from earlier sections using positron-emission tomogra-

phy (PET) as an example. In PET a molecule of physiological interest is tagged with

a positron-emitting radioisotope, and is then administered to the subject. Radiation

emitted during the decay process is detected by the imager and used to reconstruct

an image of the radiotracer density. This radiotracer map is then used to determine

where the tagged molecule is concentrating.

During radioactive decay the tracer isotope emits a positron, which travels a short

distance before annihilating with an electron, in the process producing two 511 keV

gamma rays traveling in nearly-opposite directions. A ring of detectors surrounding

the patient records a large percentage of the emitted pairs. We assume either both
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photons are detected or neither is detected (no random coincidences). The locations

at which the two photons are detected define a line along which the annihilation

event occurred, and the time difference between the detections determines the point

on the line at which the annihilation occurred. This position estimation is done in

hardware, so the attribute vectors in the data list consist of the coordinates at which

each detected event is estimated to have been emitted. For this illustration we restrict

ourselves to the two-dimensional case. This model for list-mode PET was introduced

by Parra and Barrett [1998].

The probability of the annihilation location can be modeled by an exponential

centered at the positron-emission location. The measurement errors in the position

estimation of the gamma-ray detection and the time difference between detections

are well modeled by a Gaussian. Because the spread of the Gaussian is much wider

than the spread of the exponential, the Gaussian is a good model relating the data

to the true locations.

Let the attribute vector v ∈ R2 be the estimated coordinates of each decay event.

Let r ∈ R2 be the true coordinates. The position estimate is related to the true

location by a Gaussian model:

p(v|r) =
1

N
exp

[
−1

2
(v − r)†S−1(v − r)

]
, (4.71)

where

N =
√

4π2 det(S). (4.72)

If we assume uniform sensitivity, s(r) = 1, then by (4.44) we have

u(v) = [Lf ](r) (4.73)

=

∫
∞

1

N
exp

[
−1

2
(v − r)†S−1(v − r)

]
f(r) dr (4.74)

Notice that because v and r are both in R2, the system operator L defined by (4.74)

takes the form of a convolution operator

u(r) = l(r) ~ f(r) (4.75)
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with kernel

l(r) =
1

N
exp

[
−1

2
r†S−1r

]
. (4.76)

This simplifies things greatly over the more general case where v and r have different

dimensionality. Therefore (4.45) takes the form

χ(r) = [L†w](r) (4.77)

=
1

N
exp

[
−1

2
r†S−1r

]
~ w(r). (4.78)

By the convolution theorem, the solution to (4.78) is

w(r) = F−1

{
X(ξ)

L(ξ)

}
, (4.79)

where X(ξ) is the Fourier transform of χ(r),

L (ξ) = det(S) exp

[
−1

2
ξ†S2ξ

]
, (4.80)

and F−1 indicates the inverse Fourier transform operator.

We are now in a position to answer an obvious question about PET systems: is

the average activity within a square pixel an estimable parameter from list-mode PET

data? We are interested in the activity within the region

χ(r) = rect (r) . (4.81)

To find the weight function we must solve (4.78):

rect (r) = [L†w](r) (4.82)

=
1

N
exp

[
−1

2
r†S−1r

]
~ w(r). (4.83)

Taking the Fourier transform of both sides gives

sinc(ξ) = L(ξ)W (ξ). (4.84)

Therefore

W (ξ) =
sinc(ξ)

L(ξ)
. (4.85)
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Because L(ξ) decays to zero faster than sinc(ξ) does, W (ξ) blows up for high frequen-

cies. As a result the inverse-Fourier transform will not be a function, and there is no

solution to (4.82). Thus square pixels are not estimable parameters; this shouldn’t

come as a big surprise; pixels and voxels are almost never estimable parameters in

real imaging systems. (One could interpret the inverse transform of W (ξ) as a gener-

alized function, but it would involve delta functions, in practice making it impossible

to estimate (4.53) by Monte Carlo.)

4.6 Discussion and Conclusions

We have extended the theory of estimable parameters from binned-mode linear imag-

ing systems to list-mode systems.

To do so we introduced the notion of a list-mode system operator. Like its coun-

terpart the familiar binned-mode system operator, the list-mode operator maps the

object to the mean data. As in the binned-mode case, the estimable parameters are

determined by the range of the adjoint of the system operator. The operator can also

be used to calculate the list-mode Hotelling observer.

To illustrate the theory we provided an example from PET imaging. In the future

we plan to use (4.53) to do PET reconstruction, and we also hope to solve (4.45) for

the more difficult case of SPECT.
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Chapter 5

Conclusion

This chapter summarizes the main new results of the dissertation and suggests several

avenues for future work.

5.1 Summary

Most of chapter 1 was review of previous work by others, describing accepted mod-

els for various steps of the nuclear-medicine imaging chain. Only a few parts of

the chapter are original: section 1.7.4 showed that the histogram approach produces

maximum-likelihood projection images in the limiting case of no detector blur, sec-

tions 1.7.6.3 and 1.8 provided an analysis of when discretized objects are identifiable

from list-mode data, and section 1.11.5 introduced the naive list-mode Hotelling ob-

server.

Chapter 2 reviewed several ways of constructing parametric likelihood models

for list-mode imaging systems, giving extra attention to the case when extensive

calibration data is available. The main new contribution of the chapter is introducing

the concept of double-list-mode reconstruction. In double list-mode the calibration

list is first used to reconstruct a non-parametric likelihood model, which is then used

to process the data list into a reconstruction. Because double list-mode conceptually

involves comparing each calibration event with each data event it has horrendous

time complexity. Even with the various available speedups, double list-mode is too

slow to be of practical use in SPECT given current computing technology.

The Rayleigh task study in chapter 3 compared two algorithms for reconstructing

projection images from list-mode PMT data. One was the usual histogram approach,

the other the list-mode EM algorithm. To my knowledge this is the first time that list-
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mode EM has been used to produce projection (as opposed to tomographic) images.

Rayleigh task performance shows that the EM algorithm produces higher-resolution

images than histograming ML position estimates. A task-based measure of resolution

is required because position estimates are a nonlinear function of modular-camera

data. The EM algorithm is also nonlinear. Because of the nonlinearities the usual

linear-system PSF analysis fails. The amount of resolution improvement afforded by

EM is dependent on background activity in the scene; it is not measurable against a

lumpy background.

The notion that only certain parameters of an object may be estimated without

bias is familiar from the traditional linear analysis of binned-mode imaging systems.

Chapter 4 extended this idea to list-mode systems. The concept of a list-mode system

operator was developed, and used to determine the estimable parameters and to define

the list-mode Hotelling observer.

5.2 Future Work

5.2.1 Double list-mode

Two obvious areas of further research exist for double list-mode. The first is to find

an imaging system for which producing double-list-mode reconstructions is practical.

The time complexity of comparing each data list entry to every calibration list entry

(or even just a subset) is only a problem in SPECT because we have so many list

entries. A photon-scarce system, perhaps one used in astronomy to observe gamma-

ray bursts, would be a better candidate for double list-mode.

The second is to do a task-based study comparing parametric likelihood models

with double list-mode. I had hoped to include such a study here, but it is not

computationally feasible today; it may be possible in a few years. The ideal system

for such a study would be one in which we don’t trust parametric models to do a

good job.
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5.2.2 Projection image reconstruction

An interesting question not addressed by the Rayleigh task study in chapter 3 is

whether or not using list-mode EM is necessary to obtain the resolution improvement.

Marcotte [1993] obtained impressive results using binned-mode EM to post-process

histogram reconstructions into higher-resolution projection images. Her method is

significantly faster than list-mode EM; it would be nice to know if it produces a

comparable increase in resolution.

Another unresolved matter is whether or not improving the projection images

also improves binned-mode tomographic reconstructions starting from those images.

I predict that if one is using a well-calibrated system model for tomographic recon-

struction, for example the measured H matrix used here in Arizona, there will not

be an improvement when reconstructing using the 3-dimensional binned-mode EM

algorithm. The 3-dimensional EM algorithm has similar information available to it

as that used by Marcotte’s technique, so it should be able to back out the blur on

its own. However if one is using a poor system model to reconstruct there may be a

noticeable improvement.

5.2.3 Estimability

A number of avenues are suggested by the estimability results of chapter 4. One is

figuring out how to apply them to the modular gamma camera. To do this we must

solve

χ(r) = L†w(v) (4.45)

for the weight function w(v). Note that v ∈ R9 and r ∈ R2. The PET example was

tractable only because both vectors were the same dimension, so the system operator

L worked out to be a convolution. This trick doesn’t work for the modular camera.

If we can figure out how to solve (4.45) several nifty things become possible. Most

interesting to me is the prospect of one-pass linear reconstructions using (4.53). If
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the weight function is cheap to evaluate this could be done quickly, perhaps even in

real time.

Also useful would be computing the list-mode Hotelling observer, and comparing

it to the list-mode ideal observer for problems in which we know how to evaluate

the later. This then should allow us to estimate the efficiency of reconstruction

algorithms, by comparing human (or anthropomorphic CHO) performance on the

reconstructed image with ideal performance on the raw data list.

Many of these things are already possible using the PET model. One issue that

still needs to be resolved is how best to use (4.53) to reconstruct objects. Choosing

χ(r) to be elements of the familiar pixel and voxels won’t work, because their sharp

edges make them non-estimable parameters. But perhaps through clever use of an

apodizing filter something similar can be made to work. High speed reconstruction

algorithms remain much sought after, and may have clinical applications even if they

produce lower quality reconstructions when time isn’t factored into the task.

As currently formulated the PET model does not account for random coincidences.

Seeing how that changes the estimability analysis is another possible avenue of work.
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Appendix A

Glossary of abbreviations and acronyms

2-AFC Two Alternative Forced Choice

A/D Analog to Digital

AI Artificial Intelligence

a.k.a. Also Known As.

AUC Area Under the Curve

BKE Background Known Exactly

c. circa

CAD Computer aided diagnosis

CHO Channelized Hotelling Observer

EKG Electrocardiogram1

EMSE Ensemble Mean Square Error

FNF False Negative Fraction

FOM Figure Of Merit

FPF False Positive Fraction

FWHM Full-Width Half-Maximum

GSL GNU Scientific Library

1The K comes from German “Elektrokardiogramm”.
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HMPAO Hexamethylpropyleneamine Oxime

i.i.d. independent and identically distributed

MDP Methyenediphosonate

MDRF Mean Detector Response Function

MRI Magnetic Resonance Imaging

MSE Mean Square Error

MiB Mebibytes (220 bytes), abbreviated from megabinary bytes

nucmed nuclear medicine

PET Positron Emission Tomography

PMT PhotoMultiplier Tube

PSF Point Spread Function

PSPMT Position-sensitive PhotoMultiplier Tube.

ROC Receiver Operating Characteristic

RV Random Variable

SKE/BKE Signal Known Exactly, Background Known Exactly

SKE Signal Known Exactly

SPECT Single Photon Emission Computed Tompgraphy

TNF True Negative Fraction

TPF True Positive fraction

UMC University Medical Center
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0-8176-3365-0.

Persi Diaconis and Bradley Efron. Computer-intensive methods in statistics. Scientific
American, 248(5):116–30, 1983.

David L. Donoho. High-dimensional data analysis: Curses and blessings of dimen-
sionality. Unpublished manuscript, available from http://www-stat.stanford.

edu/∼donoho/Lectures/AMS2000/AMS2000.html, 8 August 2000.

Miguel P. Eckstein, Craig K. Abbey, Francois O. Bochud, Jay L. Bartroff, and
James S. Whiting. Effect of image compression in model and human performance.
In Elizabeth A. Krupinski, editor, Medical Imaging 1999: Image Perception and
Performance, volume 3663 of Proceedings of SPIE, pages 243–252, February 1999.

Miguel P. Eckstein, Craig K. Abbey, and James S. Whiting. Human vs. model ob-
servers in anatomic backgrounds. In Harold L. Kundel, editor, Medical Imaging
1998: Image Perception, volume 3340 of Proceedings of SPIE, pages 16–26, April
1998.

Bradley Efron and Carl Morris. Stein’s paradox in statistics. Scientific American,
236(5):119–127, 1977.

Bradley Efron and Robert Tibshirani. Statistical data analysis in the computer age.
Science, 253(5018):390–395, July 1991.

Encyclopædia Britannica Online. Mizar, 21 October 2004. URL http://search.eb.

com/eb/article?tocId=9053081.



156

R. D. Fiete, H. H. Barrett, W. E. Smith, and K. J. Myers. Hotelling trace criterion and
its correlation with human-observer performance. Journal of the Optical Society of
America A – Optics, Image-Science and Vision, 4(5):945–953, May 1987.

B. Roy Frieden. The importance of being positive. In Processing of Images and Data
from Optical Sensors, volume 292 of Proceedings of SPIE, pages 151–159, 1981.

Keinosuke Fukunaga and Patrenahalli M. Narendra. A branch and bound algorithm
for computing k-nearest neighbours. IEEE Transactions on Computers, C-24(7):
750–3, July 1975.

Lars R. Furenlid, Donald W. Wilson, Yi-chun Chen, Hyunki Kim, Philip J. Pietraski,
Michael J. Crawford, and Harrison H. Barrett. FastSPECT II: A second-generation
high-resolution dynamic SPECT imager. IEEE Transactions on Nuclear Science,
51(3):631–5, June 2004.

D Gagnon, A Todd-Pokropek, A Arsenaualt, and G. Dupras. Introduction to
holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans-
actions on Medical Imaging, 8(3):245–50, September 1989.

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Michael
Booth, and Fabrice Rossi. GNU Scientific Library Reference Manual. Network
Theory Ltd., Bristol, UK, second edition, 2003. ISBN 0954161734. URL http:

//www.gnu.org/software/gsl/.

Brandon D. Gallas. Variance of the channelized-hotelling observer from a finite num-
ber of trainers and tester. In Dev P. Chakraborty and Elizabeth A. Krupinski, ed-
itors, Medical Imaging 2003: Image Perception, Observer Performance, and Tech-
nology Assessment, volume 5034 of Proceedings of SPIE, pages 100–111, 2003.

Brandon D. Gallas and Harrison H. Barrett. Validating the use of channels to estimate
the ideal linear observer. Journal of the Optical Society of America A – Optics,
Image-Science and Vision, 20(9):1725–38, September 2003.

David M. Green and John A. Swets. Signal detection theory and psychophysics. Wiley,
New York, 1966.

K. M. Hanson and K. J. Myers. Performance of the Rayleigh task based on the
posterior probability of tomographic reconstructions. In Conference Record of the
1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, pages
2049–2053, November 1991a.

Kenneth M. Hanson and Kyle J. Myers. Rayleigh task performance as a method
to evaluate image reconstruction algorithms. In W. T. Grandy, Jr. and L. H.



157

Schick, editors, Maximum Entropy and Bayesian Methods, volume 43 of Funda-
mental Theories of Physics, pages 303–312. Kluwer Academic, Dordrecht, 1991b.
URL http://public.lanl.gov/kmh/publications/maxent90.abs.html.

J. L. Harris. Resolving power and decision theory. Journal of the Optical Society of
America, 54(5):606–611, May 1964.

Ronald H. Huesman, Gregory J. Klein, William W. Moses, Jinyi Qi, Bryan W. Reut-
ter, and Patrick R. G. Virador. List-mode maximum-likelihood reconstruction
applied to positron emission mammography (PEM) with irregular sampling. IEEE
Transactions on Medical Imaging, 19(5):532–7, May 2000.

Richard Arnold Johnson and Dean W. Wichern. Applied multivariate statistical anal-
ysis. Prentice-Hall, Englewood Cliffs, NJ, second edition, 1982.

Parmeshwar Khurd, Ing-Tsung Hsiao, Anand Rangarajan, and Gene Gindi. A glob-
ally convergent regularized ordered-subset EM algorithm for list-mode reconstruc-
tion. IEEE Transactions on Nuclear Science, 51(3):719–25, June 2004.

J. Kim Quijano et al. STIS Instrument Handbook Version 7.0. Space Telescope
Science Institute, Baltimore, MD, 2003. URL http://www.stsci.edu/hst/stis/

documents/handbooks/.

J.E. Koss, D.L. Kirch, E.P. Little, T.K. Johnson, and P.P. Steele. Advantages of list-
mode acquisition of dynamic cardiac data. IEEE Transactions on Nuclear Science,
44(6):2431–2438, December 1997.

G. Krinke. The laboratory rat. Academic Press, San Diego, CA, 2000. ISBN
012426400X.

Kenneth Lange. Numerical Analysis for Statisticians. Springer-Verlag, New York,
1999. ISBN 0387949798.

Kenneth Lange and Richard Carson. EM reconstruction algorithms for emission and
transmission tomography. Journal of Computer Assisted Tomography, 8(2):306–16,
April 1984.

Carolyn E. Lehner, Zhong He, and Feng Zhang. 4π Compton imaging using a 3-
D position-sensitive CdZnTe detector via weighted list-mode maximum likelihood.
IEEE Transactions on Nuclear Science, 51(4):1618–22, August 2004.

Andre Lehovich, Harrison H. Barrett, Eric W. Clarkson, and Arthur F. Gmitro.
Estimability of spatio-temporal activation in fMRI. In Michael F. Insana and
Richard M. Leahy, editors, Information Processing in Medical Imaging (IPMI 2001
Proceedings), volume 2082 of Lecture Notes in Computer Science, pages 259–271,



158

2001. URL http://link.springer.de/link/service/series/0558/bibs/2082/

20820259.htm.

D. O. Loftsgaarden and C. P. Quesenberry. A nonparametric estimate of a multi-
variate density function. Annals of Mathematical Statistics, 36:1049–1051, June
1965. URL http://links.jstor.org/sici?sici=0003-4851%28196506%2936%

3A3%3C1049%3AANEOAM%3E2.0.CO%3B2-M.

Hope Ann Marcotte. Expectation maximization methods for processing SPECT im-
ages. Master’s thesis, University of Arizona, Committee on Optical Sciences, Tuc-
son, AZ, 1993.

Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and Exten-
sions. John Wiley & Sons, New York, 1997. ISBN 0-471-12358-7.

T. D. Milster, J. N. Aarsvold, H. H. Barrett, A. L. Landesman, L. S. Mar, D. D.
Patton, T. J. Roney, R. K. Rowe, and R. H. Seacat 3rd. A full-field modular
gamma camera. The Journal of Nuclear Medicine, 31(5):632–9, May 1990.

John F. Monahan. Numerical methods of statistics. Cambridge University Press,
Cambridge, 2001. ISBN 0521791685.

Gordon E. Moore. Cramming more components onto integrated circuits. Electron-
ics, 38(8):114–7, 19 April 1965. URL ftp://download.intel.com/research/

silicon/moorespaper.pdf.

K. J. Myers, J. P. Rolland, H. H. Barrett, and R. F. Wagner. Aperture optimization
for emission imaging: effect of a spatially varying background. Journal of the
Optical Society of America A – Optics, Image-Science and Vision, 7(7):1279–93,
July 1990.

Kyle J. Myers and Harrison H. Barrett. Addition of a channel mechanism to the
ideal-observer model. Journal of the Optical Society of America A – Optics, Image-
Science and Vision, 4(12):2447–2457, December 1987.

Kyle J. Myers, Robert F. Wagner, and Kenneth M. Hanson. Rayleigh task perfor-
mance in tomographic reconstructions: comparison of human and machine per-
formance. In Murray H. Loew, editor, Medical Imaging 1993: Image Processing,
volume 1898 of Proceedings of SPIE, pages 628–637, 1993.

OED 1989. The Oxford English Dictionary. Clarendon Press, Oxford, second edition,
1989. URL http://dictionary.oed.com.

Lucas Parra and Harrison H. Barrett. List-mode likelihood: EM algorithm and im-
age quality estimation demonstrated on 2-D PET. IEEE Transactions on Medical
Imaging, 17(2):228–35, April 1998.



159

Jinyi Qi and Ronald H. Huesman. Propagation of errors from the sensitivity image
in list mode reconstruction. IEEE Transactions on Medical Imaging, 23(9):1094–9,
September 2004.

Lord Rayleigh, John William Strutt. Investigations in optics, with special reference to
the spectroscope (sections 1-6). The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 8:261–274, 403–411, 477–486, 1879.

Lord Rayleigh, John William Strutt. Investigations in optics, with special reference
to the spectroscope (section 7). The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 9:40–55, 1880.

Andrew J. Reader, Stijn Ally, Filippos Bakatselos, Roido Manavaki, Richard J.
Walledge, Alan P. Jeavons, Peter J. Julyan, Sha Zhao, David L. Hastings, and
Jamal Zweit. Regularized one-pass list-mode EM algorithm for high resolution 3D
PET image reconstruction into large arrays. In J. Anthony Seibert, editor, 2001
IEEE Nuclear Science Symposium Conference Record Volume 4, pages 1853–1858,
2001. URL http://dias.umist.ac.uk/AJR/rople.pdf.

Andrew J. Reader, Roido Manavaki, Sha Zhao, Peter J. Julyan, David L. Hastings,
and Jamal Zweit. Accelerated list-mode EM algorithm. IEEE Transactions on
Nuclear Science, 49(1):42–49, February 2002.

J. P. Rolland and H. H. Barrett. Effect of random background inhomogeneity on
observer detection performance. Journal of the Optical Society of America A –
Optics, Image-Science and Vision, 9(5):649–58, May 1992.

H. L. Royden. Real Analysis. Macmillan, London, second edition, 1968.

John David Sain. Optical Modeling, Design Optimization, and Performance Analysis
of a Gamma Camera for Detection of Breast Cancer. PhD thesis, Unversity of
Arizona, Committee on Optical Sciences, Tucson, AZ, 2001.

David W. Scott. Multivariate density estimation: theory, practice, and visualization.
Wiley-Interscience, New York, 1992.

L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomog-
raphy. IEEE Transactions on Medical Imaging, MI-1(2):113–22, October 1982.

Steven S. Shimozaki, Miguel P. Eckstein, and Craig K. Abbey. An ideal observer with
channels versus feature-independent processing of spatial frequency and orientation
in visual search performance. Journal of the Optical Society of America A – Optics,
Image-Science and Vision, 20(12):2197–2215, December 2003.



160

B. W. Silverman. Density estimation for statistics and data analysis. Chapman and
Hall, London & New York:, 1986. ISBN 0412246201.

Donald L. Snyder and David G. Politte. Image reconstruction from list-mode data in
an emission tomography system having time-of-flight measurements. IEEE Trans-
actions on Nuclear Science, NS-30(3):1843–9, June 1983.

Frank T. Solmitz. Analysis of experiments in particle physics. Annual Review of
Nuclear Science, 14:375–402, 1964.

Mark A. Suckow, Peggy Danneman, and Cory Brayton. The laboratory mouse. CRC
Press, Boca Raton, FL, 2001. ISBN 0849303222.

John A. Swets, Robyn M. Dawes, and John Monahan. Psychological science can
improve diagnostic decisions. Psychological Science in the Public Interest (Sup-
plement to Psychological Science), 1(1):1–26, May 2000. URL http://www.

psychologicalscience.org/journals/pspi/1 1.html.

R. F. Wagner, K. J. Myers, D. G. Brown, and M. P. Anderson. Toward optimal
observer performance of detection and discrimination tasks on reconstructions from
sparse data. In K. M. Hanson and R. N. Silver, editors, Maximum Entropy and
Bayesian Methods, volume 79 of Fundamental Theories of Physics, pages 211–220.
Kluwer Academic, Dordrecht, 1996.

Robert F. Wagner, David G. Brown, and Charles E. Metz. On the multiplex advantage
of coded source/aperture photon imaging. In William R. Brody, editor, Digital
Radiography, volume 314 of Proceedings of SPIE, pages 72–76, January 1981.

A. B. Watson. Detection and recognition of simple spatial forms. In O. J. Braddick
and A. C. Sleigh, editors, Physical and Biological Processing of Images, volume 11
of Springer Series in Information Sciences, pages 100–114, 1983. URL http://

vision.arc.nasa.gov/publications/DetectionRecognitionSimple.pdf.

Donald William Wilson. Noise and Resolution Properties of FB and ML-EM Recon-
structed SPECT Images. PhD thesis, University of North Carolina at Chapel Hill,
Department of Biomedical Engineering, 1994.

Yani Zhang, Binh T. Pham, and Miguel P. Eckstein. Automated optimization of
JPEG 2000 encoder options based on model observer performance for detecting
variable signals in X-ray coronary angiograms. IEEE Transactions on Medical
Imaging, 23(4):459–474, April 2004a.

Yani Zhang, Binh T. Pham, and Miguel P. Eckstein. Evaluation of JPEG 2000
encoder options: human and model observer detection of variable signals in X-ray
coronary angiograms. IEEE Transactions on Medical Imaging, 23(5):613–632, May
2004b.


